【題目】設(shè)函數(shù).

(1)若當(dāng)時(shí),取得極值,求的值,并求的單調(diào)區(qū)間.

(2)存在兩個(gè)極值點(diǎn),求的取值范圍,并證明:.

【答案】1,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為. 2,證明見解析

【解析】

1)求導(dǎo)數(shù),由題意可知為方程的根,求解值,即可.再令導(dǎo)數(shù),分別求解單調(diào)增區(qū)間與單調(diào)減區(qū)間,即可.

2)函數(shù)存在兩個(gè)極值點(diǎn),等價(jià)于方程上有兩個(gè)不等實(shí)根,則,即可. 變形整理為;若證明不等式,則需證明,由變形為,不妨設(shè),即證,令,則,求函數(shù)的取值范圍,即可證明.

1

時(shí),取得極值.

.

的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

2

存在兩個(gè)極值點(diǎn)

方程上有兩個(gè)不等實(shí)根.

,

.

所證不等式等價(jià)于

不妨設(shè),即證

,

,上遞增.

成立.

成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,

1)求橢圓的方程;

2)過原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,ADCD,ABCDAB3,AD4,AE5

1)證明:DF∥平面BCE

2)求A到平面BEDF的距離,并求四棱錐ABEDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐中,四邊形是等腰梯形,,平面,.

1)求證:平面;

2)已知二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,的中點(diǎn),點(diǎn),分別在線段上運(yùn)動(dòng)(其中不與,重合,不與,重合),且,沿折起,得到三棱錐,則三棱錐體積的最大值為______;當(dāng)三棱錐體積最大時(shí),其外接球的半徑______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說:作品獲得一等獎(jiǎng)”; 乙說:作品獲得一等獎(jiǎng)”;

丙說:兩件作品未獲得一等獎(jiǎng)”; 丁說:作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

5

13

10

16

5

(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;

3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|x2|+|x+1|

1)解關(guān)于x的不等式fx)≤5;

2)若函數(shù)fx)的最小值記為m,設(shè)a,bc均為正實(shí)數(shù),且a+4b+9cm,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案