已知函數(shù),其中為實(shí)數(shù);
(1)當(dāng)時(shí),試討論函數(shù)的零點(diǎn)的個(gè)數(shù);
(2)已知不等式對(duì)任意都成立,求實(shí)數(shù)的取值范圍。
(1)當(dāng)或時(shí),函數(shù)有1個(gè)零點(diǎn);
當(dāng)或時(shí),函數(shù)有2個(gè)零點(diǎn);
當(dāng)時(shí),函數(shù)有3個(gè)零點(diǎn);
(2)
解析試題分析:(1) 當(dāng)時(shí),,
由 得
由上表知:, …4分范圍 1 2 + 0 - 0 + 遞增 取極大值 遞減 取極小值 遞增
故 當(dāng)或時(shí),函數(shù)有1個(gè)零點(diǎn);
當(dāng)或時(shí),函數(shù)有2個(gè)零點(diǎn);
當(dāng)時(shí),函數(shù)有3個(gè)零點(diǎn); …7分
(2)解法一:由題意知:對(duì)任意都成立
即對(duì)任意都成立,
設(shè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)若曲線在點(diǎn)處與直線相切,求的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn).
(3)設(shè)函數(shù)的導(dǎo)函數(shù)是,當(dāng)時(shí)求證:對(duì)任意成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及當(dāng)取何值時(shí)函數(shù)分別取得極大和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中為常數(shù),設(shè)為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若在區(qū)間上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),滿足. (1) 求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)三內(nèi)角所對(duì)邊分別為且,求在 上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R.
(1)若a+b≥0,求證:f(a)+f(b)≥f(-a)+f(-b);
(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com