(2012•泰州二模)如圖,三棱柱ABC-A1B1C1中,D、E分別是棱BC、AB的中點(diǎn),點(diǎn)F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求證:C1E∥平面ADF;
(2)若點(diǎn)M在棱BB1上,當(dāng)BM為何值時(shí),平面CAM⊥平面ADF?
分析:(1)連接CE交AD于O,連接OF.因?yàn)镃E,AD為△ABC中線,所以O(shè)為△ABC的重心,
CF
CC1
=
CO
CE
=
2
3
.由此能夠證明C1E∥平面ADF.
(2)當(dāng)BM=1時(shí),平面CAM⊥平面ADF.在直三棱柱ABC-A1B1C1中,先證出AD⊥平面B1BCC1.再證明當(dāng)BM=1時(shí),平面CAM⊥平面ADF.
解答:解:(1)連接CE交AD于O,連接OF.
因?yàn)镃E,AD為△ABC中線,
所以O(shè)為△ABC的重心,
CF
CC1
=
CO
CE
=
2
3

從而OF∥C1E.…(3分)
OF?面ADF,C1E?平面ADF,
所以C1E∥平面ADF.…(6分)
(2)當(dāng)BM=1時(shí),平面CAM⊥平面ADF.
在直三棱柱ABC-A1B1C1中,
由于B1B⊥平面ABC,BB1?平面B1BCC1,
所以平面B1BCC1⊥平面ABC.
由于AB=AC,D是BC中點(diǎn),所以AD⊥BC.
又平面B1BCC1∩平面ABC=BC,
所以AD⊥平面B1BCC1
而CM?平面B1BCC1,于是AD⊥CM.…(9分)
因?yàn)锽M=CD=1,BC=CF=2,所以Rt△CBM≌Rt△FCD,
所以CM⊥DF. …(11分)
DF與AD相交,所以CM⊥平面ADF.
CM?平面CAM,所以平面CAM⊥平面ADF.…(13分)
當(dāng)BM=1時(shí),平面CAM⊥平面ADF.…(14分)
點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)已知角φ的終邊經(jīng)過點(diǎn)P(1,-2),函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象的相鄰兩條對(duì)稱軸之間的距離等于
π
3
,則f(
π
12
)
=
-
10
10
-
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)若拋物線y2=2px(p>0)上的點(diǎn)A(2,m)到焦點(diǎn)的距離為6,則p=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)若動(dòng)點(diǎn)P在直線l1:x-y-2=0上,動(dòng)點(diǎn)Q在直線l2:x-y-6=0上,設(shè)線段PQ的中點(diǎn)為M(x1,y1),且(x1-2)2+(y1+2)2≤8,則x12+y12的取值范圍是
[8,16]
[8,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泰州二模)已知z=(a-i)(1+i)(a∈R,i為虛數(shù)單位),若復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在實(shí)軸上,則a=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案