(本小題滿分14分)集合A是由適合以下性質(zhì)的函數(shù)構(gòu)成的;對于任意的,都有

  (1)分別判斷函數(shù)是否在集合A中?并說明理由;

  (2)設(shè)函數(shù),試求|2a+b|的取值范圍;

  (3)在(2)的條件下,若,且對于滿足(2)的每個(gè)實(shí)數(shù)a,存在最小的實(shí)數(shù)m,使得當(dāng)恒成立,試求用a表示m的表達(dá)式.

(2)     


解析:

(I) 證明:任取,且,則

        

    因?yàn)?img width=297 height=28 src="http://thumb.zyjl.cn/pic1/1899/sx/199/365199.gif">

       所以,,   所以,,也即:;      對于,只需取

,所以, 

(II)因?yàn)?img width=107 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/8/365208.gif">屬于集合A,所以,任取,則

 也即:  ①

設(shè),則上式化為:  ②因?yàn)?img width=83 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/14/365214.gif">所以

①式對任意的恒成立,即②式對恒成立,

可以證明  所以,,即

(III)由可知:. 又由(II)可知:,所以,

i)當(dāng)時(shí),為單調(diào)遞增函數(shù),  令 

ii)當(dāng)時(shí),

此時(shí),,且當(dāng)時(shí),的最小值為

,即時(shí),為方程的較小根.

所以, 

,即時(shí),由于上單調(diào)遞增,所以,為方程的較大根,所以,.

綜上可知:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案