2x2+2y2=1與直線xsinθ+y-1=0(θ≠
π
2
+kπ,k∈Z)
的位置關(guān)系是( 。
分析:把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)和圓的半徑r,然后利用點(diǎn)到直線的距離公式表示出圓心到已知直線的距離d,比較d與r的大小關(guān)系可得出圓與直線的位置關(guān)系.
解答:解:把圓的方程化為標(biāo)準(zhǔn)方程得:x2+y2=
1
2
,
∴圓心坐標(biāo)為(0,0),半徑r=
2
2

∵θ≠
π
2
+kπ,∴0≤sin2θ<1,
∴圓心到已知直線的距離d=
1
sin2θ+1
2
2
=r,
則圓與直線的位置關(guān)系為相離.
故選A
點(diǎn)評:此題考查了直線與圓的位置關(guān)系,利用了點(diǎn)到直線的距離公式,以及正弦函數(shù)的值域,直線與圓的位置關(guān)系的判斷方法為:當(dāng)0≤d<r時(shí),直線與圓相交;當(dāng)d=r時(shí),直線與圓相切;當(dāng)d>r時(shí),直線與圓相離(d表示圓心到直線的距離,r表示圓的半徑).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓2x2+2y2=1與直線xsinq+y-1=0 的位置關(guān)系是( 。
A、相交B、相切C、相離或相切D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓2x2+2y2=1與直線xsinθ+y-1=0(θ∈R,θ≠
π2
+kπ,k∈Z)的位置關(guān)系是
相離或相切
相離或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓2x2+2y2=1與直線x•sinθ+y-1=0(θ∈R,θ≠
π
2
+kπ,k∈Z)
位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•嘉定區(qū)一模)直線xcosθ+y-1=0(θ∈R且θ≠kπ,k∈Z)與圓2x2+2y2=1的位置關(guān)系是(  )

查看答案和解析>>

同步練習(xí)冊答案