(本小題滿分14分)已知函數(shù)同時滿足如下三個條件:①定義域為;②是偶函數(shù);③時,,其中.

(Ⅰ)求上的解析式,并求出函數(shù)的最大值;

(Ⅱ)當(dāng)時,函數(shù),若的圖象恒在直線上方,求實數(shù)的取值范圍(其中為自然對數(shù)的底數(shù), ).

 

【答案】

(Ⅰ)

(Ⅱ)的圖象恒在直線y=e上方

【解析】本試題主要是考查了函數(shù)定義域和奇偶性的判定以及奇偶性的運(yùn)用和解析式的求解,以及圖像與圖像的位置關(guān)系的運(yùn)用。

(1)因為函數(shù)同時滿足如下三個條件:①定義域為;②是偶函數(shù);③時,,其中.

故可以得到上的解析式,并求出函數(shù)的最大值;

(2)當(dāng),時,函數(shù),若的圖象恒在直線上方,即成立即可。

解:(Ⅰ)任取, 

又f(x)是偶函數(shù),故…………2分

由f(x)是定義域為的偶函數(shù)可知,f(x)在的最大值即可為f(x)的最大值.

當(dāng)

          …………5分

綜上可知: 

                                                            …………6分

另解:

由f(x)是定義域為的偶函數(shù)可知,f(x)在的最大值即可為f(x)的最大值.

當(dāng)

當(dāng)

此時

當(dāng)

①當(dāng)

此時 

②當(dāng)

此時…………7分

綜上可知:

(2)

==…9分

函數(shù)的圖象恒在直線y=e上方,

成立,…………10分

,令=0,解得

 ①當(dāng)

此時…………11分

②當(dāng)

此時,

時可滿足題意;…………12分

此時…13分

綜上可知:的圖象恒在直線y=e上方,…………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案