已知集合:A={x|
2x-1x+3
≤1}
;集合:B={x||x-1|+|x-2|<2},求集合A∩(?RB).
分析:求出集合A中不等式的解集確定出A,求出B中不等式的解集,確定出B,求出B的補(bǔ)集,找出A與B補(bǔ)集的交集即可.
解答:解:集合A中的不等式變形得:
2x-1-x-3
x+3
≤0,即(x-4)(x+3)≤0,且x+3≠0,
解得:-3<x≤4,即A=(-3,4];
集合B中的不等式解得:
1
2
<x<
5
2
,即B=(
1
2
5
2
),
∴?RB=(-∞,
1
2
]∪[
5
2
,+∞),
則A∩(?RB)=(-3,
1
2
]∪[
5
2
,4).
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合,A={x|-1<x≤
1
4
},B={x|log
1
2
x>0},C={x|x>a}
,U=R.
(1)求A∪B;
(2)求圖中陰影部分M
(3)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合使A={x|x>1},B=(a,+∞),且A⊆B,則實(shí)數(shù)a的取值范圍是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合,A={x|-3≤x<7},B={x|x2-12x+20<0},C={x|x<a}.
(1)求A∪B,(?RA)∩B;
(2)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合:A={x|log2(x2-5)=log2(x-2)+2},B={x|4x-9•2x+8=0},求A∩B.

查看答案和解析>>

同步練習(xí)冊(cè)答案