(本小題滿分13分)某單位有三輛汽車參加某種事故保險(xiǎn),單位年初向保險(xiǎn)公司繳納每輛900元的保險(xiǎn)金.對(duì)在一年內(nèi)發(fā)生此種事故的每輛汽車,單位獲9000元的賠償(假設(shè)每輛車最多只賠償一次)。設(shè)這三輛車在一年內(nèi)發(fā)生此種事故的概率分別為且各車是否發(fā)生事故相互獨(dú)立,求一年內(nèi)該單位在此保險(xiǎn)中:
(1)獲賠的概率;(4分)
(2)獲賠金額的分別列與期望。(9分)
(1)
(2)綜上知,的分布列為










(元).
解:設(shè)表示第輛車在一年內(nèi)發(fā)生此種事故,.由題意知,獨(dú)立,
,
(Ⅰ)該單位一年內(nèi)獲賠的概率為

(Ⅱ)的所有可能值為,,
,


,






綜上知,的分布列為










的期望有兩種解法:
解法一:由的分布列得

(元).
解法二:設(shè)表示第輛車一年內(nèi)的獲賠金額,,
有分布列







同理得,
綜上有(元).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

1
甲、乙、丙三臺(tái)機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺(tái)機(jī)床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺(tái)機(jī)床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知離散型隨機(jī)變量的分布列如圖,設(shè),則(    )

-1
0
1
P



A、    B、
C、   D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

口袋中有2個(gè)白球和4個(gè)紅球,現(xiàn)從中隨機(jī)地不放回連續(xù)抽取兩次,每次抽取1個(gè),則
(1)第一次取出的是紅球的概率是多少?
(2)第一次和第二次都取出的是紅球的概率是多少?
(3)在第一次取出紅球的條件下,第二次取出的是紅球的的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)甲、乙兩人在罰球線投球命中的概率分別為,且各次投球相互之間沒(méi)有影響.
(1)甲、乙兩人在罰球線各投球一次,求這二次投球中恰好命中一次的概率;
(2)甲、乙兩人在罰球線各投球二次,求這四次投球中至少有一次命中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

位同學(xué)參加某項(xiàng)選拔測(cè)試,每位同學(xué)能通過(guò)測(cè)試的概率都是,假設(shè)每位同學(xué)能否通過(guò)測(cè)試是相互獨(dú)立的,則至少有一位同學(xué)通過(guò)測(cè)試的概率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

甲、乙兩人各進(jìn)行一次射擊,如果兩人擊中目標(biāo)的概率都是0.6,則其中恰有一人擊中目標(biāo)的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若血色素化驗(yàn)的準(zhǔn)確率是p, 則在10次化驗(yàn)中,有兩次不準(zhǔn)的概率   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某人射擊1次,命中7~10環(huán)的概率如下表所示:
命中環(huán)數(shù)
10環(huán)
9環(huán)
8環(huán)
7環(huán)
概率
0.12
0.18
0.28
0.32
 
則該人射擊一次,至少命中9環(huán)的概率為  ▲  

查看答案和解析>>

同步練習(xí)冊(cè)答案