【題目】在的展開式中,前3項的系數(shù)成等差數(shù)列,
(1)求的值;
(2)求展開式中二項式系數(shù)最大的項及各項系數(shù)和;
(3)求展開式中含的項的系數(shù)及有理項.
【答案】(1)(2)最大的項為第五項,;(3);;;.
【解析】
(1)根據(jù)前3項的系數(shù)成等差數(shù)列,利用等差數(shù)列的定義求得的值;
(2)根據(jù)通項公式、二項式系數(shù)的性質(zhì)求展開式中二項式系數(shù)最大的項,令即可求得展開式系數(shù)和;
(3)在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含的項的系數(shù).設(shè)展開式中第項為有理項,則,當(dāng)、4、8時對應(yīng)的項為有理項.
解:(1)展開式的通項為
因為前3項的系數(shù)成等差數(shù)列,且前三項系數(shù)為,
所以,即,
所以(舍去)或.
(2)因為,所以展開式中二項式系數(shù)最大的項為第五項,
即.
令得,即展開式系數(shù)和為
(3)通項公式:
由,,
可得含的項的系數(shù)為.
設(shè)展開式中第項為有理項,由
當(dāng)、4、8時對應(yīng)的項為有理項,有理項分別為:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將楊輝三角中的奇數(shù)換成1,偶數(shù)換成0,便可以得到如圖的“0-1三角”.在“三角”中,從第1行起,設(shè)第n次出現(xiàn)全行為1時,1的個數(shù)為,則等于( 。
A.13B.14C.15D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若射線()與直線和曲線分別交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的華為手機專賣店對該市市民使用華為手機的情況進(jìn)行調(diào)查.在使用華為手機的用戶中,隨機抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計的頻率分布直方圖如圖:
(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)的估計值(均精確到個位);
(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機宣傳活動,現(xiàn)從這20人中,隨機選取2人各贈送一部華為手機,求這2名市民年齡都在內(nèi)的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱中的底面為等腰直角三角形,,點分別是邊,上動點,若直線平面,點為線段的中點,則點的軌跡為
A. 雙曲線的一支一部分 B. 圓弧一部分
C. 線段去掉一個端點 D. 拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對“中學(xué)生追星問題”,某校團委對“學(xué)生性別和中學(xué)生追星是否有關(guān)”作了一次調(diào)查,其中女生人數(shù)是男生人數(shù)的,男生追星的人數(shù)占男生人數(shù)的,女生追星的人數(shù)占女生人數(shù)的.若有的把握認(rèn)為是否追星和性別有關(guān),則男生至少有( )
參考數(shù)據(jù)及公式如下:
A. 12B. 11C. 10D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為2,,,,分別是,,,的中點,則過且與平行的平面截正方體所得截面的面積為____,和該截面所成角的正弦值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com