設(shè)雙曲線C1的方程為,AB為其左、右兩個頂點,P是雙曲線C1上的任意一點,引QBPB,QAPAAQBQ交于點Q.

(Ⅰ)求Q點的軌跡方程;

(Ⅱ)設(shè)(I)中所求軌跡為C2,C1、C2

的離心率分別為e1e2,當(dāng)時,e2的取值范圍.

 

答案:
解析:

答案:(I)解法一:設(shè)P(x0,y), Q(x ,y )

   

   經(jīng)檢驗點不合

   因此Q點的軌跡方程為a2x2b2y2=a4(除點(-a,0,(a,0)外)

  I)解法二:設(shè)P(x­0,y0), Q(x,y), A(a, 0), B(a , 0), QBPB, QAPA

  

   I)解法三:設(shè)P(x­0,y0), Q(x,y), PAQA

   ……(1

連接PQ,取PQ中點R

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C1的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,作QB⊥PB,QA⊥PA,垂足分別為A、B,AQ與BQ交于點Q.
(1)求Q點的軌跡C2方程;
(2)設(shè)C1、C2的離心率分別為e1、e2,當(dāng)e1
2
時,求e2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

設(shè)雙曲線C1的方程為,A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,引QBPB,QAPA,AQBQ交于點Q.

(Ⅰ)求Q點的軌跡方程;

(Ⅱ)設(shè)(I)中所求軌跡為C2,C1C2

的離心率分別為e1、e2,當(dāng)時,e2的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)綜合題 題型:044

設(shè)雙曲線C1的方程為,A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,引QB⊥PB,QA⊥PA,AQ與BQ交于點Q.

(1)求Q點的軌跡方程;

(2)設(shè)(I)中所求軌跡為C2,C1、C2

的離心率分別為e1、e2,當(dāng)時,e2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線C1的方程為數(shù)學(xué)公式(a>0,b>0),A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,作QB⊥PB,QA⊥PA,垂足分別為A、B,AQ與BQ交于點Q.
(1)求Q點的軌跡C2方程;
(2)設(shè)C1、C2的離心率分別為e1、e2,當(dāng)數(shù)學(xué)公式時,求e2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市魚臺一中高二(上)期末數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

設(shè)雙曲線C1的方程為(a>0,b>0),A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,作QB⊥PB,QA⊥PA,垂足分別為A、B,AQ與BQ交于點Q.
(1)求Q點的軌跡C2方程;
(2)設(shè)C1、C2的離心率分別為e1、e2,當(dāng)時,求e2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案