【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 =λ1 +2λ2 ,其中λ1與λ2為實數(shù),則λ1+λ2的最大值為( )
A.
B.1﹣
C.
D.1+
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點P的直角坐標及曲線C的直角坐標方程;
(Ⅱ)若Q為曲線C上的動點,求PQ的中點M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題一定正確的是( )
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a ,則ap , ar , aq成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 且a1=1,an+12=Sn+1+Sn .
(1)求{an}的通項公式;
(2)設bn=a2n﹣1 , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面坐標系內(nèi),O為坐標原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當 取最小值時,求向量 的坐標;
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),已知時,.
(1)畫出偶函數(shù)的圖像;
(2)指出函數(shù)的單調(diào)遞增區(qū)間及值域;
(3)若直線與函數(shù)恰有個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取100名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數(shù)據(jù)分別列于表1和表2. 表1
停車距離d(米) | (10,20] | (20,30] | (30,40] | (40,50] | (50,60] |
頻數(shù) | 26 | a | b | 8 | 2 |
表2
平均每毫升血液酒精含量x毫克 | 10 | 30 | 50 | 70 | 90 |
平均停車距離y米 | 30 | 50 | 60 | 70 | 90 |
已知表1數(shù)據(jù)的中位數(shù)估計值為26,回答以下問題.
(Ⅰ)求a,b的值,并估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算y關(guān)于x的回歸方程 ;
(Ⅲ)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”y大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的3倍,則認定駕駛員是“醉駕”.請根據(jù)(Ⅱ)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?
(附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線 的斜率和截距的最小二乘估計分別為 , .)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com