【題目】小王投資1萬元2萬元、3萬元獲得的收益分別是4萬元、9萬元、16萬元為了預(yù)測投資資金x(萬元)與收益y萬元)之間的關(guān)系,小王選擇了甲模型和乙模型.
(1)根據(jù)小王選擇的甲、乙兩個(gè)模型,求實(shí)數(shù)a,b,c,p,q,r的值
(2)若小王投資4萬元,獲得收益是25.2萬元,請(qǐng)問選擇哪個(gè)模型較好?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果與都是整數(shù),就稱點(diǎn)為整點(diǎn),下列命題中正確的是_____________(寫出所有正確命題的編號(hào))
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果與都是無理數(shù),則直線不經(jīng)過任何整點(diǎn)
③直線經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過兩個(gè)不同的整點(diǎn)
④直線經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:與都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,圓,直線與橢圓交于,兩點(diǎn),與圓相切與點(diǎn),且為線段的中點(diǎn),若這樣的直線有4條,則的取值范圍為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若,為兩條異面直線,,為兩個(gè)平面,,,,則下列結(jié)論中錯(cuò)誤的序號(hào)是______.
①至少與,中一條相交; ②至多與,中一條相交;
③至少與,中一條平行; ④必與,中一條相交,與另一條平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.“”是“”的必要不充分條件
B.對(duì)于命題:,使得,則:均有
C.若為假命題,則,均為假命題
D.命題“若,則”的否命題為“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐S—ABCD中,∠SDA=2∠SAD=90°,∠BAD+∠ADC=180°,AB=CD,點(diǎn)F是線段
SA上靠近點(diǎn)A的一個(gè)三等分點(diǎn),AC與BD相交于E.
(1)在線段SB上作出點(diǎn)G,使得平面EFG∥平面SCD,請(qǐng)指明點(diǎn)G的具體位置,并用陰影部分表示平面EFG,不必說明平面EFG∥平面SCD的理由;
(2)若SA=SB=2,AB=AD=BD=,求點(diǎn)F到平面SCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從中任取個(gè)數(shù),從中任取個(gè)數(shù),
(1)能組成多少個(gè)沒有重復(fù)數(shù)字的四位數(shù)?
(2)若將(1)中所有個(gè)位是的四位數(shù)從小到大排成一列,則第個(gè)數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲乙兩組學(xué)生,分別參加某項(xiàng)體能測試,所得成績的莖葉圖如圖.規(guī)定測試成績大于等于90分為優(yōu)秀,80至89分為良好,60至79分為合格,60分以下為不合格.
(1)現(xiàn)從甲組數(shù)據(jù)中抽取一名學(xué)生的成績,有放回地抽取6次,記抽到優(yōu)秀成績的次數(shù)為X,求;
(2)從甲、乙兩組學(xué)生中任取3名學(xué)生,記抽中成績優(yōu)秀的學(xué)生數(shù)為Y,求Y的概率分布與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,若,且的圖象相鄰的對(duì)稱軸間的距離不小于.
(1)求的取值范圍.
(2)若當(dāng)取最大值時(shí), ,且在中, 分別是角的對(duì)邊,其面積,求周長的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com