(本題滿分12分)
設(shè)是定義在上的奇函數(shù),函數(shù)與的圖象關(guān)于軸對(duì)稱,且當(dāng)時(shí),.
(I)求函數(shù)的解析式;
(II)若對(duì)于區(qū)間上任意的,都有成立,求實(shí)數(shù)的取值范圍.
(1);
(2),實(shí)數(shù)的取值范圍為.
【解析】本題主要考查函數(shù)恒成立問題以及函數(shù)解析式的求解及常用方法和奇偶函數(shù)圖象的對(duì)稱性,是對(duì)函數(shù)知識(shí)的綜合考查,屬于中檔題.
(1)先利用函數(shù)g(x)與f(x)的圖象關(guān)于y軸對(duì)稱得:f(x)的圖象上任意一點(diǎn)P(x,y)關(guān)于y軸對(duì)稱的對(duì)稱點(diǎn)Q(-x,y)在g(x)的圖象上;然后再利用x∈[-1,0)時(shí),-x∈(0,1],則f(x)=g(-x)求出一段解析式,再利用定義域內(nèi)有0,可得f(0)=0;最后利用其為奇函數(shù)可求x∈(0,1]時(shí)對(duì)應(yīng)的解析式,綜合即可求函數(shù)f(x)的解析式;
(2)先求出f(x)在(0,1]上的導(dǎo)函數(shù),利用其導(dǎo)函數(shù)求出其在(0,1]上的單調(diào)性,進(jìn)而求出其最大值,只須讓起最大值與1相比即可求出實(shí)數(shù)a的取值范圍
解:(1) ∵的圖象與的圖象關(guān)于y軸對(duì)稱,
∴ 的圖象上任意一點(diǎn)關(guān)于軸對(duì)稱的對(duì)稱點(diǎn)在的圖象上.
當(dāng)時(shí),,則. 2分
∵為上的奇函數(shù),則. 3分
當(dāng)時(shí),,. 5分
∴ 6分
(2)由已知,.
①若在恒成立,則.
此時(shí),,在上單調(diào)遞減,,
∴ 的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012121810135434221727/SYS201212181014439047142068_DA.files/image025.png">與矛盾. 8分
②當(dāng)時(shí),令,
∴ 當(dāng)時(shí),,單調(diào)遞減,
當(dāng)時(shí), ,單調(diào)遞增,
∴ . 10分
由,得.
綜上所述,實(shí)數(shù)的取值范圍為. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com