(2013•順義區(qū)一模)在平面直角坐標(biāo)系xoy中,設(shè)拋物線y2=4x的焦點為F,準(zhǔn)線為l,P為拋物線上一點,PA⊥l,A為垂足.如果直線AF的傾斜角為120°,那么|PF|=
4
4
分析:利用拋物線的定義,|PF|=|PA|,設(shè)F在l上的射影為F′,依題意,可求得|FF′|,|AF′|,從而可求得點P的縱坐標(biāo),代入拋物線方程可求得點P的橫坐標(biāo),從而可求得|PA|.
解答:解:∵拋物線y2=4x的焦點為F,準(zhǔn)線為l,P為拋物線上一點,
∴|PF|=|PA|,F(xiàn)(1,0),準(zhǔn)線l的方程為:x=-1;
設(shè)F在l上的射影為F′,又PA⊥l,
依題意,∠AFF′=60°,|FF′|=2,
∴|AF′|=2
3
,PA∥x軸,
∴點P的縱坐標(biāo)為2
3
,設(shè)點P的橫坐標(biāo)為x0,則(2
3
)
2
=4x0,
∴x0=3,
∴|PF|=|PA|=x0-(-1)=3-(-1)=4.
故答案為:4.
點評:本題考查拋物線的簡單性質(zhì),考查轉(zhuǎn)化思想,考查解三角形的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)在復(fù)平面內(nèi),復(fù)數(shù)
1-2i
2+i
對應(yīng)的點的坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f(
π
6
)|對x∈R恒成立,且f(
π
2
)<f(π).則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)函數(shù)B1的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2-2x(x∈R)是單函數(shù);
②函數(shù)f(x)=
log2x, x≥2
2-x,  x<2
是單函數(shù);
③若y=f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④函數(shù)f(x)在定義域內(nèi)某個區(qū)間D上具有單調(diào)性,則f(x)一定是單函數(shù).
其中的真命題是
(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)參數(shù)方程
x=2-t
y=-1-2t
(為參數(shù))與極坐標(biāo)方程ρ=sinθ所表示的圖形分別是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)在△ABC中,若b=4,cosB=-
1
4
,sinA=
15
8
,則a=
2
2
,c=
3
3

查看答案和解析>>

同步練習(xí)冊答案