【題目】某校為了解高三年級(jí)不同性別的學(xué)生對(duì)體育課改上自習(xí)課的態(tài)度(肯定還是否定),進(jìn)行了如下的調(diào)查研究.全年級(jí)共有名學(xué)生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為.
(1)求抽取的男學(xué)生人數(shù)和女學(xué)生人數(shù);
(2)通過(guò)對(duì)被抽取的學(xué)生的問(wèn)卷調(diào)查,得到如下列聯(lián)表:
否定 | 肯定 | 總計(jì) | |
男生 | 10 | ||
女生 | 30 | ||
總計(jì) |
①完成列聯(lián)表;
②能否有的把握認(rèn)為態(tài)度與性別有關(guān)?
(3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.
現(xiàn)從這人中隨機(jī)抽取一男一女進(jìn)一步詢問(wèn)所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.
解答時(shí)可參考下面臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【答案】(1)55,50
(2) ①
否定 | 肯定 | 總計(jì) | |
男生 | 45 | 10 | 55 |
女生 | 30 | 20 | 50 |
總計(jì) | 75 | 30 | 105 |
有的把握認(rèn)為態(tài)度與性別有關(guān)
(3)0.5
【解析】
試題解:(1)共抽取人, 1分
男生人, 女生人, 3分
(2)①
否定 | 肯定 | 總計(jì) | |
男生 | 45 | 10 | 55 |
女生 | 30 | 20 | 50 |
總計(jì) | 75 | 30 | 105 |
② 假設(shè): 學(xué)生對(duì)體育課改上自習(xí)課的態(tài)度與性別無(wú)關(guān)
因?yàn)?/span>,
所以 有的把握認(rèn)為態(tài)度與性別有關(guān). 8分
(3)記一班被抽到的男生為,持否定態(tài)度,持肯定態(tài)度;
二班被抽到的女生為,持否定態(tài)度,持肯定態(tài)度.
則所有抽取可能共有20種:,,,;,,,;,,,;,,,;,,,. 10分
其中恰有一人持否定態(tài)度一人持肯定態(tài)度的有10種:,,,,,,,,,. 11分
記“從這人中隨機(jī)抽取一男一女,其中恰有一人持肯定態(tài)度一人持否定態(tài)度”事件為,則. 12分
答:(1)抽取男生55人,女生50人;(2)有有的把握認(rèn)為態(tài)度與性別有關(guān);
(3)恰有一人持肯定態(tài)度一人持否定態(tài)度的概率為. 13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】奇函數(shù)f(x)在R上存在導(dǎo)數(shù),當(dāng)x<0時(shí),f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)=(3m2﹣2m)x在(0,+∞)上單調(diào)遞增,g(x)=x2﹣4x+t.
(1)求實(shí)數(shù)m的值;
(2)當(dāng)x∈[1,9]時(shí),記f(x),g(x)的值域分別為集合A,B,設(shè)命題p:x∈A,命題q:x∈B,若命題q是命題p的必要不充分條件,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,在等腰梯形中,,,是的中點(diǎn).將沿折起,使二面角為,連接,得到四棱錐(如圖乙),為的中點(diǎn),是棱上一點(diǎn).
(1)求證:當(dāng)為的中點(diǎn)時(shí),平面平面;
(2)是否存在一點(diǎn),使平面與平面所成的銳二面角為,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市旅游管理部門(mén)為提升該市26個(gè)旅游景點(diǎn)的服務(wù)質(zhì)量,對(duì)該市26個(gè)旅游景點(diǎn)的交通、安全、環(huán)保、衛(wèi)生、管理五項(xiàng)指標(biāo)進(jìn)行評(píng)分.每項(xiàng)評(píng)分最低分0分,最高分100分.每個(gè)景點(diǎn)總分為這五項(xiàng)得分之和,根據(jù)考核評(píng)分結(jié)果,繪制交通得分與安全得分散點(diǎn)圖、交通得分與景點(diǎn)總分散點(diǎn)圖如圖
請(qǐng)根據(jù)圖中所提供的信息,完成下列問(wèn)題:
(1)若從交通得分排名前5名的景點(diǎn)中任取1個(gè),求其安全得分大于90分的概率;
(2)若從景點(diǎn)總分排名前6名的景點(diǎn)中任取3個(gè),記安全得分不大于90分的景點(diǎn)個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(3)記該市26個(gè)景點(diǎn)的交通平均得分為,安全平均得分為,寫(xiě)出和的大小關(guān)系?(只寫(xiě)出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com