(本題滿分12分)
已知關(guān)于的方程:.
(1)當(dāng)為何值時(shí),方程C表示圓。
(2)若圓C與直線相交于M,N兩點(diǎn),且|MN|=,求的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點(diǎn)到直線的距離為,若存在,求出的范圍,若不存在,說(shuō)明理由。
(1)時(shí)方程C表示圓。(2) ;(3)。

試題分析:(1)方程C可化為 ………………2分
顯然 時(shí)方程C表示圓!4分
(2)圓的方程化為    圓心 C(1,2),半徑 則圓心C(1,2)到直線l:x+2y-4=0的距離為   ………………6分
,有
得             …………8分
(3)設(shè)存在這樣的直線
圓心 C(1,2),半徑, 則圓心C(1,2)到直線的距離為

解得     ----------12分
點(diǎn)評(píng):典型題,涉及直線與圓的位置關(guān)系問(wèn)題,要關(guān)注弦長(zhǎng)、半徑、圓心到直線的距離三者關(guān)系。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線與圓有公共點(diǎn),則實(shí)數(shù)取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

動(dòng)點(diǎn)在圓x2+y2=1上移動(dòng)時(shí),它與定點(diǎn)B(3,0)連線的中點(diǎn)軌跡方程是(    )
A.(x+3)2+y2=4B.(x-3)2+y2=1
C.(2x-3)2+4y2=1D.(x+)2+y2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)已知與兩平行直線都相切,且圓心在直線上,
(Ⅰ)求的方程;
(Ⅱ)斜率為2的直線相交于兩點(diǎn),為坐標(biāo)原點(diǎn)且滿足,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將直線繞著其與軸的交點(diǎn)逆時(shí)針旋轉(zhuǎn)得到直線m,則m與圓截得弦長(zhǎng)為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)一束光通過(guò)M(25,18)射入被x軸反射到圓C:x2+(y-7)2=25上.
(1)求通過(guò)圓心的反射光線所在的直線方程;
(2)求在x軸上反射點(diǎn)A的活動(dòng)范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,則直線被圓所截得的弦長(zhǎng)為( 。
A.  B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)所得直線與圓的位置關(guān)系是(  ).
A.直線與圓相切B.直線與圓相交但不過(guò)圓心
C.直線與圓相離D.直線過(guò)圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若P(2,-1)為圓(x-1)2+y2=25的弦AB的中點(diǎn),則直線AB的方程是   ( )   
A.x-y-3=0B.2x+y-3=0  
C.x+y-1=0D.2x-y-5=0

查看答案和解析>>

同步練習(xí)冊(cè)答案