如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點,CD=BD=2AC=2

(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。

(1)要證明CF∥面ABE;通過平行四邊形的性質(zhì)得到CF∥AG得到
(2)要證明面ABE⊥平面BDE,先根據(jù)題意分析得到⊥面BDE,然后根據(jù)面面垂直的判定定理得到。
(3)

解析試題分析:解:(Ⅰ)證明:取BE的中點G,連FG∥,AC∥,四邊形為平行四邊形,故CF∥AG, 即證CF∥面ABE  3分

(Ⅱ)證明:△ECD為等邊三角形,得到CF⊥ED又CF⊥BDCF⊥面BDE
而CF∥AG ,故⊥面BDE,
平面ABE,平面ABE ⊥平面BDE  7分
(Ⅲ)由CF⊥面BDE,面BDE,所以
考點:空間中的平行和垂直證明以及體積的計算
點評:主要是考查了空間中的線面平行和面面垂直的證明,以及體積計算,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .

(Ⅰ) 證明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1與平面BB1D1D的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直三棱柱的三視圖如圖所示,的中點.

(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點,使 角?若存在,確定點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=

(I)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點M使直線BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.

(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點,使//平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.   
(1)證明:平面;
(2)線段上是否存在點,使所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

邊長為2的正方形ABCD所在平面外有一點P,平面ABCD,,E是PC上的一點.
 
(Ⅰ)求證:AB//平面;
(Ⅱ)求證:平面平面;
(Ⅲ)線段為多長時,平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案