【題目】已知直線 ,方程x2+y2﹣2mx﹣2y+m+3=0表示圓.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng)m=﹣2時(shí),試判斷直線l與該圓的位置關(guān)系,若相交,求出相應(yīng)弦長.

【答案】解:(Ⅰ)∵方程x2+y2﹣2mx﹣2y+m+3=0表示圓,

∴4m2+4﹣4(m+3)>0m<﹣1或m>2.

∴實(shí)數(shù)m的取值范圍是{m|m<﹣1或m>2}

(Ⅱ)當(dāng)m=﹣2時(shí),圓的方程可化為x2+y2+4x﹣2y+1=0,即(x+2)2+(y﹣1)2=4.

∴圓心為(﹣2,1),半徑為r=2

則:圓心到直線的距離

∴直線與圓相交.

弦長公式l= =2 =2.

故得弦長為2.


【解析】(Ⅰ)由圓的一般式可得解得m的取值范圍。
(Ⅱ)根據(jù)圓心到直線的距離判斷出直線和圓的位置關(guān)系是相交,由弦長公式求出結(jié)果。
【考點(diǎn)精析】通過靈活運(yùn)用直線與圓的三種位置關(guān)系,掌握直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2﹣2x+c在x=﹣2時(shí)有極大值6,在x=1時(shí)有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[﹣3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 是公差不為0的等差數(shù)列, ,且 , 成等比數(shù)列.
(1)求數(shù)列 的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列 的前 項(xiàng)和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式 的解集為 ,求不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 弦AB過F1 , 若△ABF2的內(nèi)切圓周長為π,A,B兩點(diǎn)的坐標(biāo)分別為(x1 , y1),(x2 , y2),則|y1﹣y2|的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1 (a>b>0 ) 經(jīng)過點(diǎn) P(1, ),離心率 e=
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)過點(diǎn)E(0,﹣2 ) 的直線l 與C相交于P,Q兩點(diǎn),求△OPQ 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐S﹣ABCD的底面ABCD是正方形,各側(cè)棱長與底面的邊長均相等,M為SA的中點(diǎn),則直線BM與SC所成的角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x>0,求證:1+xx2+…+xn≥(2n+1)xn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=3x2﹣2x,數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn 對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

同步練習(xí)冊(cè)答案