(理)已知雙曲線x2-y2=a2(a>0)的左右頂點(diǎn)分別為A、B,雙曲線在第一象限的圖象上有一點(diǎn)P,∠PAB=α,∠PBA=β,∠APB=γ,則

[  ]
A.

tanα+tanβ+tanγ=0

B.

tanα+tanβ-tanγ=0

C.

tanα+tanβ+2tanγ=0

D.

tanα+tanβ-2tanγ=0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-2y2=2的左、右兩個(gè)焦點(diǎn)為F1,F(xiàn)2,動(dòng)點(diǎn)P滿足|PF1|+|PF2|=4.
(I)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)設(shè)過M(3,0)的直線l交軌跡E于A、B兩點(diǎn),求以線段OA,OB 為鄰邊的平行四邊形OAPB的頂點(diǎn)P的軌跡方程;
(Ⅲ)(理)設(shè)C(a,0),若四邊形CAGB為菱形(A、B意義同(Ⅱ)),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知雙曲線-x2=1,則其漸近線方程是__________,離心率e=__________.

(理)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線x2-2y2=2的左、右兩個(gè)焦點(diǎn)為F1,F(xiàn)2,動(dòng)點(diǎn)P滿足|PF1|+|PF2|=4.
(I)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)設(shè)過M(3,0)的直線l交軌跡E于A、B兩點(diǎn),求以線段OA,OB 為鄰邊的平行四邊形OAPB的頂點(diǎn)P的軌跡方程;
(Ⅲ)(理)設(shè)C(a,0),若四邊形CAGB為菱形(A、B意義同(Ⅱ)),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年上海市浦東新區(qū)建平中學(xué)高三(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線x2-2y2=2的左、右兩個(gè)焦點(diǎn)為F1,F(xiàn)2,動(dòng)點(diǎn)P滿足|PF1|+|PF2|=4.
(I)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)設(shè)過M(3,0)的直線l交軌跡E于A、B兩點(diǎn),求以線段OA,OB 為鄰邊的平行四邊形OAPB的頂點(diǎn)P的軌跡方程;
(Ⅲ)(理)設(shè)C(a,0),若四邊形CAGB為菱形(A、B意義同(Ⅱ)),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案