(本小題滿(mǎn)分14分).如圖,在三棱錐P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,點(diǎn)D、E分別在棱PB、PC的中點(diǎn),且DE∥BC.
(1)求證:DE∥平面ACD
(2)求證:BC⊥平面PAC;
(3)求AD與平面PAC所成的角的正弦值;

(1)略 ;(2)見(jiàn)解析;(3) AD與平面PAC所成角的正弦值為.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)是,側(cè)棱長(zhǎng)是3,點(diǎn)E、F分別在BB1、DD1上,且AE⊥A1B,AF⊥A1D.

(1)求證:A1C⊥面AEF;
(2)求截面AEF與底面ABCD所成二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題9分)如圖是一個(gè)空間幾何體的三視圖,其正視圖與側(cè)視圖是邊長(zhǎng)為4cm的正三角形、俯視圖中正方形的邊長(zhǎng)為4cm,

(1)畫(huà)出這個(gè)幾何體的直觀(guān)圖(不用寫(xiě)作圖步驟);
(2)請(qǐng)寫(xiě)出這個(gè)幾何體的名稱(chēng),并指出它的高是多少;
(3)求出這個(gè)幾何體的表面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)已知四邊形滿(mǎn)足,的中點(diǎn),將沿著翻折成,使面的中點(diǎn).

(Ⅰ)求四棱錐的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

用符號(hào)語(yǔ)言表示語(yǔ)句:“直線(xiàn)經(jīng)過(guò)平面內(nèi)一定點(diǎn),但外”,并畫(huà)出圖形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA1平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD‘
(2)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為求二面角E-AF-C的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱中,側(cè)面底面,,且,O中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線(xiàn)與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
一個(gè)幾何體是由圓柱和三棱錐組合而成,點(diǎn)、、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,,

(1)求證:;
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱中,、分別是、的中點(diǎn),點(diǎn)上,

求證:(1)EF∥平面ABC;         
(2)平面平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案