如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD ,AB=1,SB=.
(1)求證:BCSC;
(2) 設(shè)M為棱SA中點(diǎn),求異面直線DM與SB所成角的大小
(3) 求面ASD與面BSC所成二面角的大小;
(1) 先證BC⊥平面SDC (2) 異面直線DM與SB所成的角為90°(3) 面ASD與面BSC所成
的二面角為45°
【解析】
試題分析:(1)∵底面ABCD是正方形,∴BC⊥DC.
∵SD⊥底面ABCD,∴SD⊥BC,又DC∩SD=D,
∴BC⊥平面SDC,∴BC⊥SC.
(2)取AB中點(diǎn)P,連結(jié)MP,DP.
在△ABS中,由中位線定理得MP//SB,或其補(bǔ)角為所求.
,又
∴在△DMP中,有DP2=MP2+DM2,
即異面直線DM與SB所成的角為90°.
(3).∵SD⊥底面ABCD,且ABCD為正方形,
∴可把四棱錐S—ABCD補(bǔ)形為長方體A1B1C1S—ABCD,
如圖2,面ASD與面BSC所成的二面角就是面ADSA1與面
BCSA1所成的二面角,
∵SC⊥BC,BC//A1S, ∴SC⊥A1S,
又SD⊥A1S,∴∠CSD為所求二面角的平面角.
在R t△SCB中,由勾股定理得SC=,在R t△SDC中,
由勾股定理得SD=1.
∴∠CSD=45°.即面ASD與面BSC所成的二面角為45°.
考點(diǎn):二面角的平面角及求法;異面直線及其所成的角.
點(diǎn)評:本題考查異面直線垂直的證明,考查異面直線所成角的大小的求法,考查二面角的大小的求法,解題
時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分15分) 如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為m,m.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕,.線段MN必須過點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1) 用x的代數(shù)式表示AM;
(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時,液晶廣告屏幕MNEF的面積S最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分15分) 如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為m,m.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕,.線段MN必須過點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1) 用x的代數(shù)式表示AM;
(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時,液晶廣告屏幕MNEF的面積S最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為m,m.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕,.線段MN必須過點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).(1) 用x的代數(shù)式表示AM;(2)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(3)當(dāng)x取何值時,液晶廣告屏幕MNEF的面積S最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com