【題目】漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一粒可賺1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒多賺0.5元;如果當(dāng)天未能按量完成任務(wù),則按完成的雕刻量領(lǐng)取當(dāng)天工資.
(Ⅰ)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量(單位:粒, )的函數(shù)解析式;
(Ⅱ)該雕刻師記錄了過(guò)去10天每天的雕刻量(單位:粒),整理得下表:
雕刻量 | 210 | 230 | 250 | 270 | 300 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┣笤摰窨處熯@10天的平均收入;
(ⅱ)求該雕刻師當(dāng)天的收入不低于300元的概率.
【答案】(1)(2)(。309.1元;(2)0.7
【解析】試題分析:
(1)利用題意將函數(shù)寫(xiě)成分段函數(shù)的形式:
(2)(i)由(1) 的結(jié)論求得該雕刻師這10天的平均收入為309.1元;
(ii) 當(dāng)天收入不低于300元的雕刻量有250,270,和300.據(jù)此可得該雕刻師當(dāng)天的收入不低于300元的概率為0.7.
試題解析:
(I)依題意得:
當(dāng)時(shí), ,
當(dāng)時(shí), ,
所以.
(II)(ⅰ)由(I)得
所以該雕刻師這10天的平均收入為
(元)
(ⅱ)該雕刻師當(dāng)天收入不低于300元的雕刻量有250,270,和300.
概率分別是0.3,0.3和0.1.
所以該雕刻師當(dāng)天收入不低于300元的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x∈(﹣∞,0)時(shí),f(x)=﹣x2+mx﹣1.
(1)當(dāng)x∈(0,+∞)時(shí),求f(x)的解析式;
(2)若方程f(x)=0有五個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=x+ ﹣2.
(1)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(2)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓: 的離心率與雙曲線(xiàn)的離心率互為倒數(shù),且橢圓的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)交橢圓于, 兩點(diǎn), ()為橢圓上一點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a+a﹣1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a ;
(Ⅱ)a +a ;
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】孝感車(chē)天地關(guān)于某品牌汽車(chē)的使用年限(年)和所支出的維修費(fèi)用(千元)由如表的統(tǒng)計(jì)資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫(huà)出散點(diǎn)圖并判斷使用年限與所支出的維修費(fèi)用是否線(xiàn)性相關(guān);如果線(xiàn)性相關(guān),求回歸直線(xiàn)方程;
(2)若使用超過(guò)8年,維修費(fèi)用超過(guò)1.5萬(wàn)元時(shí),車(chē)主將處理掉該車(chē),估計(jì)第10年年底時(shí),車(chē)主是否會(huì)處理掉該車(chē)?
()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)給出的一個(gè)取值,使得曲線(xiàn)存在斜率為的切線(xiàn),并說(shuō)明理由;
(Ⅱ)若存在極小值和極大值,證明: 的極小值大于極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是公比為正數(shù)的等比數(shù)列, .
(1)求的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com