是橢圓上一點,是橢圓的焦點,則的最大值是( )    
A.4B.6C.9D.12
C
根據(jù)橢圓定義得:
故選C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

過點的橢圓的離心率為,橢圓與軸交于兩點,過點的直線與橢圓交于另一點,并與軸交于點,直線與直線交于點
(1)當直線過橢圓的右焦點時,求線段的長;
(2)當點異于點時,求證:為定值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.橢圓與雙曲線有相同的焦點,則的值是
A.B.1或-2C.1或D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.
(1)求橢圓C的方程;
(2)設(shè)軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明:直線x軸相交于定點;
(3)在(2)的條件下,過點的直線與橢圓交于、兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓)的離心率,連接橢圓的四個頂點得到的菱形的面積為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點的直線與橢圓相交另一點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)若衛(wèi)星運行軌道橢圓的離心率為,地
心為右焦點,
(1)求橢圓方程 ;
(2)若P為橢圓上一動點,求的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知命題:方程表示焦點在y軸上的橢圓; 命題:直線
與拋物線 有兩個交點
(I)若為真命題,求實數(shù)的取值范圍
(II)若,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.橢圓的長軸長,短軸長,離心率依次是( )
A.5, 3, B.10, 6, C.5, 3 , D.10, 6,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知 F1、F2是橢圓的兩焦點,是橢圓在第一象限弧上一點,且滿足=1.過點P作傾斜角互補的兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)求證直線AB的斜率為定值;
(3)求△PAB面積的最大值.

查看答案和解析>>

同步練習冊答案