已知{an}是整數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
an
,an+1)(n∈N*)
在函數(shù)y=x2+2的圖象上,則an=
2n-1
2n-1
分析:由題意可得,an+1=an+2,結(jié)合等差數(shù)列的通項(xiàng)可求
解答:解:由題意可得,an+1=an+2
∴數(shù)列{an}是以1為首項(xiàng),以2為公差的等差數(shù)列
an=1+2(n-1)=2n-1
故答案為:2n-1
點(diǎn)評(píng):本題主要考查了等差數(shù)列的通項(xiàng)公式的求解,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是遞增數(shù)列,其前n項(xiàng)和為Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,寫出一組符合條件的m,n,k的值;若不存在,請(qǐng)說明理由;
(Ⅲ)設(shè)bn=an-
n-3
2
,cn=
2(n+3)an
5n-1
,若對(duì)于任意的n∈N*,不等式
5
m
31(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
1
cn+1+n-1
≤0恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)a≠0,數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且an=
Sn
n
+a(n-1)

(1)求證:數(shù)列{an}為等差數(shù)列;
(2)若bn=3n+(-1)nan,且數(shù)列{bn}是單調(diào)遞增數(shù)列,求實(shí)數(shù)a的取值范圍;
(3)若a=
1
2
,數(shù)列{cn}滿足:cn=
an
an+2011
,對(duì)于任意給定的正整數(shù)k,是否存在p,q∈N*,使ck=cp•cq?若存在,求p,q的值(只要寫出一組即可);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市鐵路中學(xué)2012屆高三10月檢測(cè)數(shù)學(xué)試題 題型:044

(理科)已知{an}是遞增數(shù)列,其前n項(xiàng)和為Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*

(Ⅰ)求數(shù)列{an}的通項(xiàng)an;

(Ⅱ)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,寫出一組符合條件的m,n,k的值;若不存在,請(qǐng)說明理由;

(Ⅲ)設(shè),,若對(duì)于任意的n∈N*,不等式恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 數(shù)列》2010年單元測(cè)試卷(1)(解析版) 題型:解答題

已知{an}是遞增數(shù)列,其前n項(xiàng)和為Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,寫出一組符合條件的m,n,k的值;若不存在,請(qǐng)說明理由;
(Ⅲ)設(shè)bn=an-,cn=,若對(duì)于任意的n∈N*,不等式-≤0恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知{an}是遞增數(shù)列,其前n項(xiàng)和為Sn,a1>1,且10Sn=(2an+1)(an+2),n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)an;
(Ⅱ)是否存在m,n,k∈N*,使得2(am+an)=ak成立?若存在,寫出一組符合條件的m,n,k的值;若不存在,請(qǐng)說明理由;
(Ⅲ)設(shè)bn=an-,cn=,若對(duì)于任意的n∈N*,不等式-≤0恒成立,求正整數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案