已知各項為實數(shù)的數(shù)列{an}是等比數(shù)列,且a1=2,a5+a7=8(a2+a4).數(shù)列{bn}滿足:對任意正整數(shù)n,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
(1)求數(shù)列{an}與數(shù)列{bn}的通項公式;
(2)在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入k個(-1)kbk(k∈N*)后,得到一個新的數(shù)列{cn}.求數(shù)列{cn}的前2012項之和.
(1)設等比數(shù)列{an}的公比為q,由a5+a7=8(a2+a4),
a1q4(1+q2)=8a1q(1+q2),
又∵a1=2,q≠0,1+q2>0,∴q=2,
數(shù)列{an}的通項公式為an=2n,n∈N*,
由題意有a1b1=(1-1)•21+1+2=2,∴b1=1,
當n≥2時,anbn=(n-1)•2n+1-[(n-2)•2n+2]=n•2n,
∴bn=n,.
故數(shù)列{bn}的通項公式為bn=n,n∈N*
(2)設數(shù)列{an}的第k項是數(shù)列{cn}的第mk項,即ak=cmk,k∈N*,
當k≥2時,mk=k+[1+2+…+(k-1)]=
k(k+1)
2
,
m62=
62×63
2
=1953,m63=
63×64
2
=2016,
設Sn表示數(shù)列{cn}的前n項之和,
則S2016=(a1+a2+…+a63)+[(-1)1•b1+(-1)2•2b2+…+(-1)62•62•b62],
其中a1+a2+…+a63=
2(1-263)
1-2
=264-2,
∵(-1)n•nbn=(-1)n•n2,
∴[(-1)1•b1+(-1)2•2b2+…+(-1)62•62•b62]=(-1)1•12+(-1)2•22+…+(-1)62•622
=(22-12)+(42-32)+…+(622-612)=(4×1-1)+(4×2-1)+(4×3-1)+…+(4×31-1)
=4×
1+31
2
×31-31=1953,
∴S2016=(264-2)+1953=264+1951,
從而S2012=S2016-(C2013+C2014+C2015+C2016)=264+1951-3(-1)62×b62-a63
=264+1951-3×62-263
=263+1765.
所以數(shù)列{cn}的前2012項之和為263+1765.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

20、已知各項均為實數(shù)的數(shù)列{an}是公差為d的等差數(shù)列,它的前n項和為Sn,且滿足S4=2S2+8.
(1)求公差d的值;
(2)若數(shù)列{an}的首項的平方與其余各項之和不超過10,則這樣的數(shù)列至多有多少項;
(3)請直接寫出滿足(2)的項數(shù)最多時的一個數(shù)列(不需要給出演算步驟).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知各項為實數(shù)的數(shù)列{an}是等比數(shù)列,且a1=2,a5+a7=8(a2+a4).數(shù)列{bn}滿足:對任意正整數(shù)n,有a1b1+a2b2+…+anbn=(n-1)•2n+1+2
(1)求數(shù)列{an}與數(shù)列{bn}的通項公式;
(2)在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入k個(-1)kbk(k∈N*)后,得到一個新的數(shù)列{cn}.求數(shù)列{cn}的前2012項之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知各項為實數(shù)的數(shù)列{an}是等比數(shù)列,且a1=2,a5+a7=8(a2+a4).數(shù)列{bn}滿足:對任意正整數(shù)n,有數(shù)學公式
(1)求數(shù)列{an}與數(shù)列{bn}的通項公式;
(2)在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入k個(-1)kbk(k∈N*)后,得到一個新的數(shù)列{cn}.求數(shù)列{cn}的前2012項之和.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省深圳市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

已知各項為實數(shù)的數(shù)列{an}是等比數(shù)列,且a1=2,a5+a7=8(a2+a4).數(shù)列{bn}滿足:對任意正整數(shù)n,有
(1)求數(shù)列{an}與數(shù)列{bn}的通項公式;
(2)在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入k個(-1)kbk(k∈N*)后,得到一個新的數(shù)列{cn}.求數(shù)列{cn}的前2012項之和.

查看答案和解析>>

同步練習冊答案