精英家教網 > 高中數學 > 題目詳情

已知橢圓:的離心率,原點到過點,的直線的距離是.

1求橢圓的方程;

2若橢圓上一動點關于直線的對稱點為, 的取值范圍;

3如果直線交橢圓于不同的兩點,,都在以為圓心的圓上,的值.

 

123

【解析】

試題分析:(1)由截距式可得直線的方程,根據點到線的距離公式可得間的關系,又因為,解方程組可得的值。(2)由點關于直線的對稱點問題可知直線和直線垂直,且的中點在直線上,由此可用表示出。再將點代入橢圓方程將表示代入上式,根據橢圓方程可的的范圍,從而可得出所求范圍。(3)將直線和橢圓方程聯(lián)立,消去得關于的一元二次方程,根據韋達定理可得根與系數的關系。根據題意可知,可根據斜率相乘等于列出方程,也可轉化為向量數量積為0列出方程。

試題解析:(Ⅰ)因為,,所以 .

因為原點到直線:的距離,解得,.

故所求橢圓的方程為. 4

(Ⅱ)因為點關于直線的對稱點為,

所以 解得 ,.

所以.

因為點在橢圓:,所以.

因為, 所以.所以的取值范圍為. 9

(Ⅲ)由題意消去 ,整理得.可知.

,,的中點是,

,.

所以. 所以.

. 又因為,

所以.

所以 14

考點:1點到線的距離; 2橢圓方程;3點關于線的對稱點;4轉換思想。

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆湖北部分重點中學高二上學期期末考試文科數學試卷(解析版) 題型:選擇題

過雙曲線的一個焦點作垂直于實軸的弦, 是另一焦點,若是鈍角三角形,則雙曲線的離心率范圍是( )

A B C D

 

查看答案和解析>>

科目:高中數學 來源:2015屆湖北荊門市高二上學期期末質量檢測文數學試卷(解析版) 題型:選擇題

已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,則雙曲線的方程為

A. B.

C. D.

 

查看答案和解析>>

科目:高中數學 來源:2015屆湖北孝感高級中學高二上學期期末考試理科數學試卷(解析版) 題型:填空題

如圖所示,邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機撒一粒豆子,若它落在陰影區(qū)域內的概率為,則陰影區(qū)域的面積為 .

 

 

查看答案和解析>>

科目:高中數學 來源:2015屆湖北孝感高級中學高二上學期期末考試理科數學試卷(解析版) 題型:選擇題

拋物線上的一點M到焦點的距離為1,則點My軸的距離是 ( )

A B

C1 D

 

查看答案和解析>>

科目:高中數學 來源:2015屆湖北孝感高級中學高二上學期期末考試文科數學試卷(解析版) 題型:填空題

在正整數數列中,由1開始依次按如下規(guī)則取它的項:第一次取1,第二次取2個連續(xù)偶數2、4;第三次取3個連續(xù)奇數5、7、9;第四次取4個連續(xù)偶數10、12、14、16;第五次取5個連續(xù)奇數17、19、21、23、25.按此規(guī)則一直取下去,得到一個子數列1,2,4,5,7,9,10,12,14,16,17,.則在這個子數列中,由1開始的第15個數是 ,第2014個數是__________.

 

查看答案和解析>>

科目:高中數學 來源:2015屆湖北孝感高級中學高二上學期期末考試文科數學試卷(解析版) 題型:選擇題

在某地區(qū)某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是連續(xù)7天每天新增感染人數不超過5,根據連續(xù)7天的新增病例數計算,下列~ ⑤各個選項中,一定符合上述指標的是 ( )

平均數; 標準差; 平均數且標準差;

平均數且極差小于或等于2;眾數等于1且極差小于或等于4。

A①② B③④ C③④⑤ D④⑤

 

查看答案和解析>>

科目:高中數學 來源:2015屆浙江省臺州市高二第一學期期末數學試卷(解析版) 題型:填空題

在平面直角坐標系中,不等式組表示的平面區(qū)域的面積為,則實數的值是 .

 

查看答案和解析>>

科目:高中數學 來源:2015屆浙江溫州十校聯(lián)合體高二上學期期末聯(lián)考文數學卷(解析版) 題型:填空題

過點P(3,4)的動直線與兩坐標軸的交點分別為AB,過A、B分別作兩軸的垂線交于點M,則點M的軌跡方程是 。

 

查看答案和解析>>

同步練習冊答案