【題目】已知函數(shù)fx)=(1sinxex.

1)求fx)在區(qū)間(0,π)的極值;

2)證明:函數(shù)gx)=fx)﹣sinx1在區(qū)間(﹣π,π)有且只有3個(gè)零點(diǎn),且之和為0.

【答案】1)極小值,無極大值;(2)見解析

【解析】

1)先對(duì)函數(shù)進(jìn)行求導(dǎo),再根據(jù)導(dǎo)函數(shù)的零點(diǎn)進(jìn)行分類討論即可;

2)先求出0的一個(gè)零點(diǎn),然后判斷出上的單調(diào)性,結(jié)合第(1)問,得出上的單調(diào)性,進(jìn)而得出只有一個(gè)零點(diǎn);通過求,可以得到上也只有一個(gè)零點(diǎn);從而證明函數(shù)在區(qū)間有且只有3個(gè)零點(diǎn),且之和為0.

(1)因?yàn)?/span>,

所以

,得,從而,

當(dāng)時(shí),,

所以,,從而單調(diào)遞減;

當(dāng),,

所以,從而單調(diào)遞增,

在區(qū)間有極小值,無極大值;

2)證明:因?yàn)?/span>,所以,從而的一個(gè)零點(diǎn);

,則在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,

所以在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,

,

所以在區(qū)間有唯一的零點(diǎn),記為,

又因?yàn)?/span>,

所以對(duì)于任意的,若,必有,

所以在區(qū)間有唯一的零點(diǎn)

在區(qū)間的零點(diǎn)為,0,

所以在區(qū)間有且只有3個(gè)零點(diǎn),且之和為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是圓的周長(zhǎng)與直徑的比值,一般用希臘字母表示.早在公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點(diǎn)后7位的結(jié)果,他是世界上第一個(gè)把圓周率的數(shù)值計(jì)算到小數(shù)點(diǎn)后第7位的人,這比歐洲早了約1000.生活中,我們也可以通過如下隨機(jī)模擬試驗(yàn)來估計(jì)的值:在區(qū)間內(nèi)隨機(jī)取個(gè)數(shù),構(gòu)成個(gè)數(shù)對(duì),設(shè),能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)對(duì),則通過隨機(jī)模擬的方法得到的的近似值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國(guó)數(shù)學(xué)家萊布尼茲(1646年-1716)1674年得到了第一個(gè)關(guān)于π的級(jí)數(shù)展開式,該公式于明朝初年傳入我國(guó).在我國(guó)科技水平業(yè)已落后的情況下,我國(guó)數(shù)學(xué)家天文學(xué)家明安圖(1692年-1765)為提高我國(guó)的數(shù)學(xué)研究水平,從乾隆初年(1736)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有《割圓密率捷法》一書,為我國(guó)用級(jí)數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級(jí)數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國(guó)20181月至12月石油進(jìn)口量統(tǒng)計(jì)圖(其中同比是今年第個(gè)月與去年第個(gè)月之比),則下列說法錯(cuò)誤的是(

A.2018年下半年我國(guó)原油進(jìn)口總量高于2018年上半年

B.201812個(gè)月中我國(guó)原油月最高進(jìn)口量比月最低進(jìn)口量高1152萬噸

C.2018年我國(guó)原油進(jìn)口總量高于2017年我國(guó)原油進(jìn)口總量

D.20181—5月各月與2017年同期相比較,我國(guó)原油進(jìn)口量有增有減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市抽查了100天該超市的日純利潤(rùn)數(shù)據(jù),并將日純利潤(rùn)數(shù)據(jù)分成以下幾組(單位:萬元):,,,,,統(tǒng)計(jì)結(jié)果如下表所示:

組別

頻數(shù)

5

20

30

30

10

5

以上述樣本分布的頻率估計(jì)總體分布的概率,解決下列問題:

1)從該大型超市近幾年的銷售記錄中抽出5天,求其中日純利潤(rùn)在區(qū)間內(nèi)的天數(shù)不少于2的概率;

2)該超市經(jīng)理由頻數(shù)分布表可以認(rèn)為,該大型超市每天的純利潤(rùn)服從正態(tài)分布,其中,近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值).

①試?yán)迷撜龖B(tài)分布,估計(jì)該大型超市1000天內(nèi)日純利潤(rùn)在區(qū)間內(nèi)的天數(shù)(精確到個(gè)位);

②該大型超市負(fù)責(zé)人根據(jù)每日的純利潤(rùn)給超市員工制定了兩種不同的獎(jiǎng)勵(lì)方案:

方案一:直接發(fā)放獎(jiǎng)金,日純利潤(rùn)低于時(shí)每名員工發(fā)放獎(jiǎng)金70元,日純利潤(rùn)不低于時(shí)每名員工發(fā)放獎(jiǎng)金90元;

方案二:利用抽獎(jiǎng)的方式獲得獎(jiǎng)金,其中日純利潤(rùn)不低于時(shí)每位員工均有兩次抽獎(jiǎng)機(jī)會(huì),日純利潤(rùn)低于時(shí)每位員工只有一次抽獎(jiǎng)機(jī)會(huì);每次抽獎(jiǎng)的獎(jiǎng)金及對(duì)應(yīng)的概率分別為

金額

50

100

概率

小張恰好為該大型超市的一名員工,則從數(shù)學(xué)期望的角度看,小張選擇哪種獎(jiǎng)勵(lì)方案更有利?

參考數(shù)據(jù):若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.

1)求圓的普通方程與的直角坐標(biāo)方程;

2)點(diǎn)是曲線上一點(diǎn),由向圓引切線,切點(diǎn)分別為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系

在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.已知直線 .

(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(Ⅱ)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

[選修 4-5]不等式選講

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的五面體中,四邊形為菱形,且,,的中點(diǎn).

1)求證:平面;

2)若平面平面,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率是圓的周長(zhǎng)與直徑的比值,一般用希臘字母表示.早在公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點(diǎn)后7位的結(jié)果,他是世界上第一個(gè)把圓周率的數(shù)值計(jì)算到小數(shù)點(diǎn)后第7位的人,這比歐洲早了約1000.生活中,我們也可以通過如下隨機(jī)模擬試驗(yàn)來估計(jì)的值:在區(qū)間內(nèi)隨機(jī)取個(gè)數(shù),構(gòu)成個(gè)數(shù)對(duì),設(shè),能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)對(duì),則通過隨機(jī)模擬的方法得到的的近似值為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案