【題目】在正四棱錐P﹣ABCD中,PA= AB,M是BC的中點(diǎn),G是△PAD的重心,則在平面PAD中經(jīng)過G點(diǎn)且與直線PM垂直的直線有條.

【答案】無數(shù)
【解析】設(shè)正四棱錐的底面邊長為a,則側(cè)棱長為 a.
由PM⊥BC,
∴PM= a.
連接PG并延長與AD相交于N點(diǎn)
則PN= a,MN=AB=a,
∴PM2+PN2=MN2 ,
∴PM⊥PN,又PM⊥AD,
∴PM⊥面PAD,
∴在平面PAD中經(jīng)過G點(diǎn)的任意一條直線都與PM垂直.
所以答案是無數(shù).

【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海濱游樂場出租快艇的收費(fèi)辦法如下:不超過十分鐘收費(fèi)80元;超過十分鐘,超過部分按每分鐘10元收費(fèi)(對(duì)于其中不足一分鐘的部分,若小于0.5分鐘則不收費(fèi),若大于或等于0.5分鐘則按一分鐘收費(fèi)),小茗同學(xué)為該游樂場設(shè)計(jì)了一款收費(fèi)軟件,程序框圖如圖所示,其中x(分鐘)為航行時(shí)間,y(元)為所收費(fèi)用,用[x]表示不大于x的最大整數(shù),則圖中①處應(yīng)填(

A.y=10[x]
B.y=10[x]﹣20
C.y=10[x﹣ ]﹣20
D.y=10[x+ ]﹣20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線 經(jīng)過 兩點(diǎn),那么直線 的傾斜角的取值范圍(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)過點(diǎn),且橢圓的離心率為

1)求橢圓的方程;

2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P﹣ABC的高為PH,若三個(gè)側(cè)面兩兩垂直,則H為△ABC的(
A.內(nèi)心
B.外心
C.垂心
D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,點(diǎn)D是BC的中點(diǎn).

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,底面△ABC為等腰直角三角形,∠B=90°,D為棱BB1上一點(diǎn),且平面DA1C⊥平面AA1C1C.
(1)求證:D點(diǎn)為棱BB1的中點(diǎn);
(2)判斷四棱錐A1﹣B1C1CD和C﹣A1ABD的體積是否相等,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), . 

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,定圓C半徑為2,A為圓C上的一個(gè)定點(diǎn),B為圓C上的動(dòng)點(diǎn),若點(diǎn)A,B,C不共線,且| | |對(duì)任意t∈(0,+∞)恒成立,則 =

查看答案和解析>>

同步練習(xí)冊(cè)答案