【題目】以下判斷正確的是 ( )
A. 函數(shù)為上的可導(dǎo)函數(shù),則是為函數(shù)極值點(diǎn)的充要條件
B. 若命題為假命題,則命題與命題均為假命題
C. 若,則的逆命題為真命題
D. 在中,“”是“”的充要條件
【答案】D
【解析】
根據(jù)極值點(diǎn)的定義,判斷A選項(xiàng)是否正確.根據(jù)含有簡(jiǎn)單邏輯聯(lián)結(jié)詞命題的真假,判斷B選項(xiàng)是否正確.寫出原命題的逆命題并判斷真假,由此得出C選項(xiàng)是否正確.根據(jù)三角形大角對(duì)大邊以及正弦定理,判斷D選項(xiàng)是否正確.
對(duì)于A選項(xiàng),由于導(dǎo)數(shù)為零的點(diǎn)不一定是極值點(diǎn),故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),由于為假命題,則至少有一個(gè)為假命題,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),原命題的逆命題為“若,則”,顯然,但是,故逆命題為假命題,所以C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),根據(jù)三角形中大角對(duì)大邊,及正弦定理有,所以D選項(xiàng)正確.故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求的值;
(Ⅱ)寫出函數(shù)的單調(diào)遞減區(qū)間(無需證明) ;
(Ⅲ)若實(shí)數(shù)滿足,則稱為的二階不動(dòng)點(diǎn),求函數(shù)的二階不動(dòng)點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=,x∈(-2,2).
(1) 判斷f(x)的奇偶性并說明理由;
(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);
(3) 若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間的一臺(tái)機(jī)床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為, ,…, ,測(cè)量其長(zhǎng)度(單位: ),得到下表中數(shù)據(jù):
編號(hào) | ||||||||
長(zhǎng)度 | 1.49 | 1.46 | 1.51 | 1.51 | 1.53 | 1.51 | 1.47 | 1.51 |
其中長(zhǎng)度在區(qū)間內(nèi)的零件為一等品.
(1)從上述8個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;
(2)從一等品零件中,隨機(jī)抽取2個(gè).
①用零件的編號(hào)列出所有可能的抽取結(jié)果;
②求這2個(gè)零件長(zhǎng)度相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1- (a>0,a≠1)且f(0)=0.
(1)求a的值;
(2)若函數(shù)g(x)=(2x+1)·f(x)+k有零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)當(dāng)x∈(0,1)時(shí),f(x)>m·2x-2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)在傾斜角為的直線上,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的方程為.
(1)寫出的參數(shù)方程及的直角坐標(biāo)方程;
(2)設(shè)與相交于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,定義:表示不小于的最小整數(shù),例如:,.
(1)若,求實(shí)數(shù)的取值范圍;
(2)若,求時(shí)實(shí)數(shù)的取值范圍;
(3)設(shè),,若對(duì)于任意的,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年是中國改革開放40周年,改革開放40年來,從開啟新時(shí)期到跨入新世紀(jì),從站上新起點(diǎn)到進(jìn)人新時(shí)代,我們黨引領(lǐng)人民繪就了一幅波瀾壯闊、氣勢(shì)恢宏的歷史畫卷,譜寫了一曲感天動(dòng)地、氣壯山河的奮斗贊歌,40年來我們始終堅(jiān)持保護(hù)環(huán)境和節(jié)約資源,堅(jiān)持推進(jìn)生態(tài)文明建設(shè),鄭州市政府也越來越重視生態(tài)系統(tǒng)的重建和維護(hù),若市財(cái)政下?lián)芤豁?xiàng)專款100百萬元,分別用于植綠護(hù)綠和處理污染兩個(gè)生態(tài)維護(hù)項(xiàng)目,植綠護(hù)綠項(xiàng)目五年內(nèi)帶來的生態(tài)收益可表示為投放資金x(單位:百萬元)的函數(shù)M(x(單位:百萬元):,處理污染項(xiàng)目五年內(nèi)帶來的生態(tài)收益可表示為投放資金x(單位:百萬元)的函數(shù)N(x)(單位:百萬元):.
(Ⅰ)設(shè)分配給植綠護(hù)綠項(xiàng)目的資金為x(百萬元),則兩個(gè)生態(tài)項(xiàng)目五年內(nèi)帶來的收益總和為y,寫出y關(guān)于x的函數(shù)解析式和定義域。
(Ⅱ)生態(tài)項(xiàng)目的投資開始利潤薄弱,只有持之以恒,才能功在當(dāng)代,利在千秋,試求出y的最大值,并求出此時(shí)對(duì)兩個(gè)生態(tài)項(xiàng)目的投資分別為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們把定義域?yàn)?/span>且同時(shí)滿足以下兩個(gè)條件的函數(shù)稱為“函數(shù)”:(1)對(duì)任意的,總有;(2)若,,則有成立,下列判斷正確的是( )
A.若為“函數(shù)”,則
B.若為“函數(shù)”,則在上為增函數(shù)
C.函數(shù)在上是“函數(shù)”
D.函數(shù)在上是“函數(shù)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com