試題分析:(1)由于E、F分別是AC和BC邊的中點,所以在翻折后的三角形ABC中,
.由線面平行的判定定理可得結論.
(2)由棱錐E-DFC的體積為
,因為△ABC沿CD翻折成直二面角A-DC-B,并且
平面BCD,即由三棱錐的體積公式,即可求出結論.
(3)在線段AC上是否存在一點P,使BP⊥DF,即轉化為直線與平面垂直的問題,假設存在點P作
,k為垂足,連結BK即可得到直線DF
平面BPK,所以可得
.通過三角形的相似即可得到所求的結論.
(1)AB//平面DEF,
如圖.在△ABC中,∵E,F分別是AC,BC的中點,故EF//AB,
又AB
平面DEF,∴AB//平面DEF, 4分
(2)∵AD⊥CD,BD⊥CD, 將△ABC沿CD翻折成直二面角A-DC-B
∴AD⊥BD,AD⊥平面BCD,取CD中點M,則EM//AD,∴EM⊥平面BCD,且EM=a/2
,a="2." 8分
(3)存在滿足條件的點P.
做法:因為三角形BDF為正三角形,過B做BK⊥DF,延長BK交DC于K,過K做KP//DA,交AC于P.則點P即為所求.
證明:∵AD⊥平面BCD , KP//DA,∴PK⊥平面BCD,PK⊥DF,又 BK⊥DF,PK∩BK=K,∴DF⊥平面PKB,DF⊥PB.又∠DBK=∠KBC=∠BCK=30°,∴DK=KF=KC/2.
故AP:OC=1:2,AP:AC=1:3 12分