(本題滿分12分)
函數(shù),其中為常數(shù).
(1)證明:對任意,的圖象恒過定點;
(2)當(dāng)時,判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說明理由;
(3)若對任意時,恒為定義域上的增函數(shù),求的最大值.

解:(1)令,得,且,
所以的圖象過定點;  
(2)當(dāng)時,, 
,經(jīng)觀察得有根,下證明無其它根.
,當(dāng)時,,即上是單調(diào)遞增函數(shù).
所以有唯一根;且當(dāng)時,, 上是減函數(shù);當(dāng)時,,上是增函數(shù);
所以的唯一極小值點.極小值是
(3),令
由題設(shè),對任意,有,,
   
當(dāng)時,,是減函數(shù);
當(dāng)時,,是增函數(shù);
所以當(dāng)時,有極小值,也是最小值,
又由,得,即的最大值為

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)若,求函數(shù)上的最小值;
(2)若函數(shù)上存在單調(diào)遞增區(qū)間,試求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)函數(shù),.
(Ⅰ)當(dāng)時,上恒成立,求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,若函數(shù)上恰有兩個不同零點,求實數(shù)的取值范圍;
(Ⅲ)是否存在實數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)已知函數(shù)
(Ⅰ)若為定義域上的單調(diào)函數(shù),求實數(shù)m的取值范圍;
(Ⅱ)當(dāng)時,求函數(shù)的最大值;
(Ⅲ)當(dāng),且時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在R上的函數(shù),其中a為常數(shù).
(I)若x=1是函數(shù)的一個極值點,求a的值;
(II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍;
(III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax+ (a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)若曲線處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給出一個不等式(x∈R),經(jīng)驗證:當(dāng)c=1,2,3時,不等式對一切實數(shù)x都成立。試問:當(dāng)c取任何正數(shù)時,不等式對任何實數(shù)x是否都成立?若能成立,請給出證明;若不成立,請求出c的取值范圍,使不等式對任何實數(shù)x都能成立。

查看答案和解析>>

同步練習(xí)冊答案