【題目】關(guān)于不同的直線與不同的平面,有下列六個命題:

①若

②若;

③若;

④若;

⑤若;

⑥若

其中正確命題的序號是__________;

【答案】①③⑤

【解析】

①:根據(jù)線面平行的性質(zhì)定理、面面垂直的判定定理,結(jié)合平行線的性質(zhì)進(jìn)行判斷即可;

②:根據(jù)線面平行的判定定理進(jìn)行判斷即可;

③:根據(jù)線面平行的性質(zhì)定理、面面平行的性質(zhì),以及平行線的性質(zhì)進(jìn)行判斷即可;

④:在正方體中可以找到特例進(jìn)行判斷即可;

⑤:根據(jù)平面法向量的性質(zhì)和空間向量夾角公式進(jìn)行判斷即可;

⑥:根據(jù)面面平行的性質(zhì),結(jié)合直線與直線的位置關(guān)系進(jìn)行判斷即可.

①:因?yàn)?/span>,所以存在過直線的一個平面與平面交于直線,顯然有,而,所以,而,因此,故本命題是真命題;

②:只有當(dāng)才能推出,故本命題是假命題;

③:因?yàn)?/span>,所以存在過直線的一個平面與平面交于直線,顯然有,又,所以,因此,所以,故本命題是真命題;

④:在如圖的正方體中:

平面記為平面,平面記為平面,直線記為直線,直線記為直線,顯然符合,但是,(當(dāng)然也可以是異面直線),故本命題是假命題,

⑤:因?yàn)?/span>,所以平面的法向量分別為:,因?yàn)?/span>所以為,故本命題是真命題;

⑥:因?yàn)?/span>所以直線沒有交點(diǎn),故兩直線是平行線或異面直線,故本命題是假命題.

故答案為:①③⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“2019是一個重要的時間節(jié)點(diǎn)——中華人民共和國成立70周年,和全面建成小康社會的 關(guān)鍵之年.70年披荊斬棘,70年砥礪奮進(jìn),70年風(fēng)雨兼程,70年滄桑巨變,勤勞勇敢的中國 人用自己的雙手創(chuàng)造了一項(xiàng)項(xiàng)輝煌的成績,取得了舉世矚目的成就.趁此良機(jī),李明在天貓網(wǎng)店銷售新中國成立70周年紀(jì)念冊,每本紀(jì)念冊進(jìn)價4元,物流費(fèi)、管理費(fèi)共為/本,預(yù)計當(dāng)每本紀(jì)念冊的售價為元(時,月銷售量為千本.

(I)求月利潤(千元)與每本紀(jì)念冊的售價X的函數(shù)關(guān)系式,并注明定義域:

(II)當(dāng)為何值時,月利潤最大?并求出最大月利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線上的一點(diǎn)作拋物線的切線,分別交x軸于點(diǎn)Dy軸于點(diǎn)B,點(diǎn)Q在拋物線上,點(diǎn)E,F分別在線段AQBQ上,且滿足,線段QD交于點(diǎn)P.

(1)當(dāng)點(diǎn)P在拋物線C上,且時,求直線的方程;

(2)當(dāng)時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)既是奇函數(shù),又在上單調(diào)遞增的是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)滿足,且當(dāng)時,成立,若,,則a,b,c的大小關(guān)系是()

A. aB. C. D. c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左頂點(diǎn),且點(diǎn)在橢圓上, 分別是橢圓的左、右焦點(diǎn)。過點(diǎn)作斜率為的直線交橢圓于另一點(diǎn),直線交橢圓于點(diǎn).

1求橢圓的標(biāo)準(zhǔn)方程;

2為等腰三角形,求點(diǎn)的坐標(biāo);

3,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市食品藥品監(jiān)督管理局開展2019年春季校園餐飲安全檢查,對本市的8所中學(xué)食堂進(jìn)行了原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的檢查和評分,其評分情況如下表所示:

中學(xué)編號

1

2

3

4

5

6

7

8

原料采購加工標(biāo)準(zhǔn)評分x

100

95

93

83

82

75

70

66

衛(wèi)生標(biāo)準(zhǔn)評分y

87

84

83

82

81

79

77

75

(1)已知x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(精確到0.1)

(2)現(xiàn)從8個被檢查的中學(xué)食堂中任意抽取兩個組成一組,若兩個中學(xué)食堂的原料采購加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的評分均超過80分,則組成“對比標(biāo)兵食堂”,求該組被評為“對比標(biāo)兵食堂”的概率.

參考公式:;

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊答案