直線(xiàn)l是曲線(xiàn)y=-
1
3
x3-
3
x
的切線(xiàn),它的傾斜角a的取值范圍是( �。�
A、(
π
2
,
6
]
B、[
3
,π)
C、(
π
2
,
3
]
D、[
π
3
,
π
2
)
分析:根據(jù)導(dǎo)數(shù)的幾何意義可知切線(xiàn)的斜率即為該點(diǎn)處的導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)的取值范圍求出斜率的范圍,最后再根據(jù)斜率與傾斜角之間的關(guān)系k=tanα,求出α的范圍即可.
解答:解:∵tanα=-x2-
3

∴tanα∈(-∞,-
3
].
∵α∈(0,π)
∴α∈(
π
2
,
2
3
π
]
故選C.
點(diǎn)評(píng):此題考查了利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)的方程,直線(xiàn)傾斜角與斜率的關(guān)系,以及正切函數(shù)的圖象與性質(zhì).要求學(xué)生掌握導(dǎo)函數(shù)在某點(diǎn)的函數(shù)值即為過(guò)這點(diǎn)切線(xiàn)方程的斜率,且直線(xiàn)的斜率為傾斜角的正切值,掌握正切函數(shù)的圖象與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,直線(xiàn)l的方程為y=kx+b.
(1)求過(guò)函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線(xiàn)方程;
(2)若直線(xiàn)l是曲線(xiàn)y=f(x)的切線(xiàn),求證:f(x)≥kx+b對(duì)任意x∈R成立;
(3)若f(x)≥kx+b對(duì)任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,直線(xiàn)l的方程為y=kx+b.
(1)若直線(xiàn)l是曲線(xiàn)y=f(x)的切線(xiàn),求證:f(x)≥kx+b對(duì)任意x∈R成立;
(2)若f(x)≥kx+b對(duì)任意x∈R成立,求實(shí)數(shù)k、b應(yīng)滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,直線(xiàn)l是曲線(xiàn)y=f(x)在x=a處的切線(xiàn),若f'(a)=1,則實(shí)數(shù)a的值是
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年安徽省合肥市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ex,直線(xiàn)l的方程為y=kx+b.
(1)求過(guò)函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線(xiàn)方程;
(2)若直線(xiàn)l是曲線(xiàn)y=f(x)的切線(xiàn),求證:f(x)≥kx+b對(duì)任意x∈R成立;
(3)若f(x)≥kx+b對(duì)任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省惠州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ex,直線(xiàn)l的方程為y=kx+b.
(1)求過(guò)函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線(xiàn)方程;
(2)若直線(xiàn)l是曲線(xiàn)y=f(x)的切線(xiàn),求證:f(x)≥kx+b對(duì)任意x∈R成立;
(3)若f(x)≥kx+b對(duì)任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿(mǎn)足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹