證明函數(shù)f(x)=x+在(0,1)上為減函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
對于定義域為D的函數(shù),若同時滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域為[];那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若函數(shù)是閉函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

判斷并利用定義證明f(x)=在(-∞,0)上的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(附加題)本小題滿分10分
已知是定義在上單調(diào)函數(shù),對任意實數(shù)有:時,.
(1)證明:
(2)證明:當(dāng)時,
(3)當(dāng)時,求使對任意實數(shù)恒成立的參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(每小題6分,共12分)求下列函數(shù)的定義域:
(1) 
(2) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(16分)已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時,
(1)當(dāng)時,求函數(shù)的解析式;
(2)若函數(shù)為單調(diào)遞減函數(shù);
①直接寫出的范圍(不必證明);
②若對任意實數(shù),恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)設(shè)函數(shù)f(x)=.
(1)求f(x)的定義域;(2)判斷f(x)的奇偶性;(3)求證:f+f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
(1)證明:函數(shù)上是減函數(shù),在[,+∞)上是增函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)(1)二次函數(shù)滿足:為偶函數(shù)且,求的解析式;
(2)若函數(shù)定義域為,求取值范圍。
(3)若函數(shù)值域為,求取值范圍。
(4)若函數(shù)上單調(diào)遞減,求取值范圍。

查看答案和解析>>

同步練習(xí)冊答案