已知橢圓的方程為,點分別為其左、右頂點,點分別為其左、右焦點,以點為圓心,為半徑作圓;以點為圓心,為半徑作圓;若直線被圓和圓截得的弦長之比為;
(1)求橢圓的離心率;
(2)己知,問是否存在點,使得過點有無數(shù)條直線被圓和圓截得的弦長之比為;若存在,請求出所有的點坐標(biāo);若不存在,請說明理由.
解:(1)由,得直線的傾斜角為,
則點到直線的距離,
故直線被圓截得的弦長為,
直線被圓截得的弦長為, (3分)
據(jù)題意有:,即, (5分)
化簡得:,
解得:或,又橢圓的離心率;
故橢圓的離心率為.(7分)
(2)假設(shè)存在,設(shè)點坐標(biāo)為,過點的直線為;
當(dāng)直線的斜率不存在時,直線不能被兩圓同時所截;
故可設(shè)直線的方程為,
則點到直線的距離,
由(1)有,得=,
故直線被圓截得的弦長為, (9分)
則點到直線的距離,
,故直線被圓截得的弦長為, (11分)
據(jù)題意有:,即有,整理得,
即,兩邊平方整理成關(guān)于的一元二次方程得
, (13分)
關(guān)于的方程有無窮多解,
故有:,
故所求點坐標(biāo)為(-1,0)或(-49,0). (16分)
(注設(shè)過P點的直線為后求得P點坐標(biāo)同樣得分)
解析
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知+=1的焦點F1、F2,在直線l:x+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P為橢圓+=1上任意一點,F1、F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標(biāo), 若不存在,試說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線關(guān)于y軸對稱,它的頂點在坐標(biāo)原點,并且經(jīng)過點M(),
求它的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在平面直角坐標(biāo)系中,的兩個頂點的坐標(biāo)分別為,平面內(nèi)兩點同時滿足一下條件:①;②;③
(1)求的頂點的軌跡方程;
(2)過點的直線與(1)中的軌跡交于兩點,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(15分)已知橢圓的對稱軸在坐標(biāo)軸上,短軸的一個端點與兩個焦點組成一個等邊三角形,
(1)求橢圓的離心率;
(2)若焦點到同側(cè)頂點的距離為,求橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com