設(shè)數(shù)列{an}是等比數(shù)列,公比q≠1,已知其中連續(xù)三項恰為某等差數(shù)列的第r項,第2r項,第4r項,則等比數(shù)列{an}的公比q=
 
分析:由題意,某等比數(shù)列的連續(xù)三項恰為等差數(shù)列的第r項,第2r項,第4r項故可設(shè)出等比數(shù)列的連續(xù)三項分別為
a
q
,a,aq,由等差數(shù)列的性質(zhì)建立方程aq=a+2(a-
a
q
)解出公比的值;
解答:解:設(shè)等比數(shù)列連續(xù)三項分別為
a
q
,a,aq,
∵此三項分別是等差數(shù)列的第r項,第2r項,第4r項
則有aq=a+2(a-
a
q
);
解得q=2或q=1(舍去)
故答案為2
點評:本題主要考查了等差數(shù)列的性質(zhì)和等比數(shù)列的性質(zhì).考查了學(xué)生對數(shù)列基礎(chǔ)知識的掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列{an}的一個子數(shù)列.設(shè)數(shù)列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項、第m(m≥2)項(設(shè)am=t)作為一個等比數(shù)列的第1項、第2項,試問當(dāng)且僅當(dāng)t為何值時,該數(shù)列為{an}的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱為數(shù)列{an}的一個子數(shù)列,設(shè)數(shù)列{an}是一個首項為a1,公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5為公比為q的等比數(shù)列,求公比q的值;
(2)若a1=1,d=2,請寫出一個數(shù)列{an}的無窮等比子數(shù)列{bn};
(3)若a1=7d,{cn}是數(shù)列{an}的一個無窮子數(shù)列,當(dāng)c1=a2,c2=a6時,試判斷{cn}能否是{an}的無窮等比子數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是等比數(shù)列,a1=
1
512
,q=2
,則a4與a10的等比中項為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列{an}是等比數(shù)列,a1=
1
512
,q=2
,則a4與a10的等比中項為( 。
A.
1
4
B.
1
8
C.±
1
4
D.±
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省宿遷中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列{an}的一個子數(shù)列.設(shè)數(shù)列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項、第m(m≥2)項(設(shè)am=t)作為一個等比數(shù)列的第1項、第2項,試問當(dāng)且僅當(dāng)t為何值時,該數(shù)列為{an}的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案