(12分)如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數t,問:x取何值時,長方體的容積V有最大值?
科目:高中數學 來源:湖北省荊門市2011-2012學年高二下學期期末質量檢測數學理科試題 題型:044
如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數t,問:x取何值時,長方體的容積V有最大值?
查看答案和解析>>
科目:高中數學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯考數學理卷 題型:解答題
(12分)如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數t,問:x取何值時,長方體的容積V有最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數t,問:x取何值時,長方體的容積V有最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:
如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數t,問:x取何值時,長方體的容積V有最大值?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com