(2013•汕尾二模)已知函數(shù)f(x)=ax+lnx,其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).
(Ⅰ) 當a=-1時,求f(x)的最大值;
(Ⅱ) 討論f(x)在區(qū)間(0,e)上的單調(diào)情況;
(Ⅲ)試推斷方程|2x(x-lnx)|=2lnx+x是否有實數(shù)解.若有實數(shù)解,請求出它的解集.
分析:(Ⅰ)由題意,對函數(shù)f(x)=x+lnx求導數(shù),研究出函數(shù)在定義域上的單調(diào)性,判斷出最大值,即可求出;
(II)由于函數(shù)f(x)=ax+lnx系數(shù)中帶有參數(shù)a,可先求導,對參數(shù)a的取值范圍進行討論,確定出區(qū)間(0,e)上的單調(diào)情況;
(III)由于函數(shù)的定義域是正實數(shù)集,故方程|2x(x-lnx)|=2lnx+x可變?yōu)閨x-lnx|=
lnx
x
+
1
2
,再分別研究方程兩邊對應(yīng)函數(shù)的性質(zhì),即可作出判斷.
解答:解:(Ⅰ) 當a=-1時,f(x)=-x+lnx,f′(x)=-1+
1
x
=
1-x
x
…(1分)
當0<x<1時,f′(x)>0;當x>1時,f′(x)<0.
∴f(x)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù)…(3分)
∴f(x)max=f(1)=-1…(4分)
(Ⅱ)∵f′(x)=a+
1
x
,x∈(0,e),
1
x
(
1
e
,+∞)
…(5分)
①若a≥-
1
e
,則f′(x)>0,從而f(x)在(0,e)上增函數(shù)…(6分)
②若a<-
1
e
,則由f′(x)>0⇒a+
1
x
>0,即0<x<-
1
a

由f′(x)<0⇒a+
1
x
<0,即-
1
a
<x<e.…(7分)
∴f(x)在(0,-
1
a
)
上增函數(shù),在(-
1
a
,e)
為減函數(shù)…(8分)
綜合上面得:當a≥-
1
e
時,f(x)在(0,e)上增函數(shù);當a<-
1
e
時,f(x)在(0,-
1
a
)
上增函數(shù),在(-
1
a
,e)
為減函數(shù).
(Ⅲ)|2x(x-lnx)|=2lnx+x?|x-lnx|=
lnx
x
+
1
2
…(9分)
由(Ⅰ)知當a=-1時f(x)max=f(1)=-1,即-x+lnx≤-1
∴|x-lnx|≥1…(10分)
又令g(x)=
lnx
x
+
1
2
,g′(x)=
1-lnx
x2

令g′(x)>0,得0<x<e;令g′(x)<0,得x>e
∴g(x)的增區(qū)間為(0,e),減區(qū)間為(e,+∞)
∴g(x)max=g(e)=
1
e
+
1
2
<1,∴g(x)<1…(12分)
∴|x-lnx|>g(x),即|x-lnx|>
lnx
x
+
1
2
…(13分)
∴方程|x-lnx|=
lnx
x
+
1
2
即方程|2x(x-lnx)|=2lnx+x沒有實數(shù)解.…(14分)
點評:本題考查導數(shù)綜合運用,解題的關(guān)鍵是理解導數(shù)與函數(shù)性質(zhì)的相關(guān)對應(yīng),本題考查了靈活轉(zhuǎn)化的能力,計算能力,分類討論的思想,綜合性強,難度較高,是高考中考查能力的常用試題,題后應(yīng)用心體會本題中所使用的轉(zhuǎn)化技巧及分類的標準.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•汕尾二模)cos150°的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕尾二模)如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(Ⅰ)求證:DA⊥平面PAB;
(Ⅱ) 求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕尾二模)同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第23個圖案中需用黑色瓷磚
100
100
塊.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕尾二模)如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n);
①f(3)=
7
7

②f(n)=
2n-1
2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕尾二模)已知正方體被過一面對角線和它對面兩棱中點的平面截去一個三棱臺后的幾何體的主(正)視圖和俯視圖如下,則它的左(側(cè))視圖是(  )

查看答案和解析>>

同步練習冊答案