【題目】已知函數(shù) .

(1)若 ,求曲線 在點(diǎn) 處的切線方程;

(2)若對(duì)任意 在恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:

(1)利用題意可得切線斜率 ,切點(diǎn)為 ,所以曲線 在點(diǎn)處的切線方程為 .

(2)將問題轉(zhuǎn)化為不等式恒成立,分類討論可得實(shí)數(shù) 的取值范圍為 .

試題解析:

解:(1)當(dāng) 時(shí), ,則 ,故切線斜率 ,又因?yàn)榍悬c(diǎn)為 ,所以曲線 在點(diǎn)處的切線方程為,即 .

(2)不等式等價(jià)于不等式,記,則 ,令 ,得 .

①當(dāng),即時(shí) , ,所以單調(diào)遞增,所以,解得,此時(shí).

②當(dāng)時(shí),即 時(shí), , 時(shí), ,所以

函數(shù)上單調(diào)遞減,在上單調(diào)遞增,于是 ,不合題意,舍去.

綜上所述,實(shí)數(shù) 的取值范圍為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.

(1)求證:平面PAC⊥平面PCD;
(2)若E是PD的中點(diǎn),求平面BCE將四棱錐P﹣ABCD分成的上下兩部分體積V1、V2之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊地皮,其中, 是直線段,曲線段是拋物線的一部分,且點(diǎn)是該拋物線的頂點(diǎn), 所在的直線是該拋物線的對(duì)稱軸.經(jīng)測(cè)量, km, km, .現(xiàn)要從這塊地皮中劃一個(gè)矩形來建造草坪,其中點(diǎn)在曲線段上,點(diǎn), 在直線段上,點(diǎn)在直線段上,設(shè)km,矩形草坪的面積為km2

(1)求,并寫出定義域;

(2)當(dāng)為多少時(shí),矩形草坪的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)為2的正方形ABCD中,

(1)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.求證:A′D⊥EF
(2)當(dāng)BE=BF= BC時(shí),求三棱錐A′﹣EFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的點(diǎn),且BE⊥B1C.

(1)求CE的長(zhǎng);
(2)求證:A1C⊥平面BED;
(3)求A1B與平面BDE夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一扇形的周長(zhǎng)為20cm,當(dāng)扇形的圓心角α等于多少時(shí),這個(gè)扇形的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)F(x)= ,其中f(x)=log2(x2+1),g(x)=log2(|x|+7).
(1)在實(shí)數(shù)集R上用分段函數(shù)形式寫出函數(shù)F(x)的解析式;
(2)求函數(shù)F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x﹣y+ =0相切,過點(diǎn)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求 的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為正的常數(shù),函數(shù)f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)g(x)= ,求g(x)在區(qū)間[1,e]上的最小值.(e≈2.71828為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案