【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱AB,BB1的中點,則直線BC1與EF所成角的余弦值是(
A.
B.
C.
D.

【答案】B
【解析】解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系, 設(shè)正方體ABCD﹣A1B1C1D1中棱長為2,
則E(2,1,0),F(xiàn)(2,2,1),B(2,2,0),C1(0,2,2),
=(﹣2,0,2), =(0,1,1),
設(shè)直線BC1與EF所成角為θ,
則cosθ=|cos< , >|= = =
∴直線BC1與EF所成角的余弦值是
故選:B.

【考點精析】利用異面直線及其所成的角對題目進行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,常數(shù)a>0.
(1)設(shè)mn>0,證明:函數(shù)f(x)在[m,n]上單調(diào)遞增;
(2)設(shè)0<m<n且f(x)的定義域和值域都是[m,n],求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)討論函數(shù)f(x)的定義域;
(2)當(dāng)a>1時,解關(guān)于x的不等式:f(x)<f(1);
(3)當(dāng)a=2時,不等式f(x)﹣log2(1+2x)>m對任意實數(shù)x∈[1,3]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知經(jīng)過點A(﹣4,0)的動直線l與拋物線G:x2=2py(p>0)相交于B、C,當(dāng)直線l的斜率是 時, . (Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a x(a>0且a≠1)的圖象經(jīng)過點(2,
(1)求a的值
(2)比較f(2)與f(b2+2)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四面體S﹣ABC中, ,二面角S﹣AC﹣B的余弦值為- ,則該四面體外接球的表面積是(
A.
B.
C.24π
D.6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則它的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|(x+1).
(1)將f(x)寫成分段函數(shù),并作出函數(shù)f(x)的圖象;
(2)根據(jù)函數(shù)的圖象寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線 與直線y=k(x-2)+4有兩個交點,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案