函數(shù)f(x)=
a-x2
|x+1|-1
為奇函數(shù)的充要條件為
0<a≤1
0<a≤1
分析:函數(shù)是奇函數(shù),所以分母去絕對(duì)值后一定為x,結(jié)合奇函數(shù)的定義域,得到x的范圍,再根據(jù)二次根式的定義求a的范圍即可.
解答:解:(先看必要性)
∵函數(shù) f(x)=
a-x2
|x+1|-1
為奇函數(shù)
∴f(-x)=-f(x)
∴|x+1|-1=x,即x≥-1
而奇函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱
∴函數(shù)f(x)的定義域?yàn)閇-a,0)∪(0,a]⊆[-1,0)∪(0,1]
∴0<a≤1
(再看充分性)∵0<a≤1
而a-x2≥0
∴x2≤a≤1
∴-1≤x≤1且x≠0
∴|x+1|-1=x∴f(x)=
a-x2
x

∴f(x)為奇函數(shù)
故答案為0<a≤1
點(diǎn)評(píng):本題考查函數(shù)的奇偶性,以及充要條件的概念運(yùn)用,解題時(shí)要挖掘出函數(shù)的定義域,此類題目定義域容易被忽視而難以解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(2-x)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=
x
.又g(x)=cos
πx
2
,則集合{x|f(x)=g(x)}等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)在x=x0處取得極值,則點(diǎn)(x0,f(x0))稱為函數(shù)f(x)的一個(gè)極值點(diǎn).已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d∈R)的一個(gè)極值點(diǎn)恰為坐標(biāo)系原點(diǎn),且y=f(x)在x=1處的切線方程為3x+y-1=0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無(wú)窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案