【題目】下列說(shuō)法中:

①若,滿足,則的最大值為4;

②若,則函數(shù)的最小值為3;

③若,滿足,則的最大值為;

④若,滿足,則的最小值為2;

⑤函數(shù)的最小值為9.

正確的________.(把你認(rèn)為正確的序號(hào)全部寫上)

【答案】③④⑤

【解析】

分別利用基本不等式和柯西不等式求解其最值,即可作出判定,得到答案.

由題意,知①中,若,滿足,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),所以的最小值為4,所以不正確;

②中,若,則函數(shù)即函數(shù)的最大值為-1,所以不正確;

③中,由柯西不等式可得,

當(dāng),即時(shí)取等號(hào),即的最小值為,所以正確;

④中,由,利用基本不等式可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即,解得,即的最小值為2,所以正確;

⑤中,函數(shù) ,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以最小值為9,所以正確,

綜上所述,正確有③④⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在進(jìn)價(jià)基礎(chǔ)上每漲價(jià)1元,其銷售量就減少10個(gè),已知這種商品進(jìn)價(jià)為40/個(gè),若按50元一個(gè)售出時(shí)能賣出500個(gè).

1)請(qǐng)寫出售價(jià)x)元與利潤(rùn)y元之間的函數(shù)關(guān)系式;

2)試計(jì)算當(dāng)售價(jià)定為多少元時(shí),獲得的利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知橢圓C1+=1,C2+=1(a>b>0)有相同的離心率,F(xiàn)(﹣ , 0)為橢圓C2的左焦點(diǎn),過(guò)點(diǎn)F的直線l與C1、C2依次交于A、C、D、B四點(diǎn).
(1)求橢圓C2的方程;
(2)求證:無(wú)論直線l的傾斜角如何變化恒有|AC|=|DB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)絡(luò)營(yíng)銷和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化.某調(diào)查機(jī)構(gòu)隨機(jī)抽取8名購(gòu)物者進(jìn)行采訪,4名男性購(gòu)物者中有3名傾向于網(wǎng)購(gòu),1名傾向于選擇實(shí)體店,4名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店.

(1)若從8名購(gòu)物者中隨機(jī)抽取2名,其中男女各一名,求至少1名傾向于選擇實(shí)體店的概率:

(2)若從這8名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量的貢獻(xiàn)率, 越接近于1,表示回歸效果越好;②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1;③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;④對(duì)分類變量,它們的隨機(jī)變量的觀測(cè)值來(lái)說(shuō), 越小,“有關(guān)系”的把握程度越大.其中正確命題的個(gè)數(shù)是

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中為了解高中學(xué)生的性別和喜歡打籃球是否有關(guān),對(duì)50名高中學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:

已知在這50人中隨機(jī)抽取1人,抽到喜歡打籃球的學(xué)生的概率為

Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

Ⅱ)判斷是否有99.5%的把握認(rèn)為喜歡打籃球與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;

(3)若,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】德國(guó)數(shù)學(xué)家科拉茨1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘31(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1. 對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:l可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為

A. 4 B. 6 C. 8 D. 32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求證:平面ABC1⊥平面A1C1CA;
(Ⅱ)設(shè)D是A1C1的中點(diǎn),判斷并證明在線段BB1上是否存在點(diǎn)E,使DE∥平面ABC1;若存在,求三棱錐E﹣ABC1的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案