【題目】己知橢圓過點,,是兩個焦點.以橢圓的上頂點為圓心作半徑為的圓,
(1)求橢圓的方程;
(2)存在過原點的直線,與圓分別交于,兩點,與橢圓分別交于,兩點(點在線段上),使得,求圓半徑的取值范圍.
【答案】(1)(2)
【解析】
(1)由題意結(jié)合橢圓性質(zhì)可得,進(jìn)而可得,即可得解;
(2)當(dāng)直線斜率不存在時,;當(dāng)直線斜率存在時,設(shè)直線方程為:, ,,聯(lián)立方程后利用弦長公式可得,由圓的性質(zhì)可得,轉(zhuǎn)化條件得,可得,即可得解.
(1)設(shè)橢圓的焦距為,
由題意,,所以,,
故橢圓的方程為;
(2)當(dāng)直線斜率不存在時,圓過原點,符合題意,;
當(dāng)直線斜率存在時,設(shè)直線方程為:,,,
由直線與橢圓交于、兩點,
則,所以,,
則,
所以,
點到直線的距離,則 ,
因為,點在線段上,所以點在線段的延長線上,
只需即,
所以,
則
因為,
所以,所以,;
綜上,的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體ABCD的邊長等于2,點A,E位于平面BCD的兩側(cè),且,點P是AC的中點.
(1)求證:平面
(2)求BP與平面所成的角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項公式an=﹣n2+8n﹣12,前n項和為Sn,若n>m,則Sn﹣Sm的最大值是( )
A.5B.10C.15D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標(biāo)原點,動點在圓上,過作軸的垂線,垂足為,點滿足.
(1)求點的軌跡的方程;
(2)直線上的點滿足.過點作直線垂直于線段交于點.
(ⅰ)證明:恒過定點;
(ⅱ)設(shè)線段交于點,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓過點,,是兩個焦點.以橢圓的上頂點為圓心作半徑為的圓,
(1)求橢圓的方程;
(2)存在過原點的直線,與圓分別交于,兩點,與橢圓分別交于,兩點(點在線段上),使得,求圓半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個極值點,(其中),且的取值范圍為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,點為線段的中點,點為線段上靠近的三等分點.現(xiàn)沿進(jìn)行翻折,得到四棱錐,如圖2,且.在圖2中:
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com