【題目】己知橢圓過點,是兩個焦點.以橢圓的上頂點為圓心作半徑為的圓,

1)求橢圓的方程;

2)存在過原點的直線,與圓分別交于兩點,與橢圓分別交于,兩點(點在線段上),使得,求圓半徑的取值范圍.

【答案】12

【解析】

1)由題意結(jié)合橢圓性質(zhì)可得,進(jìn)而可得,即可得解;

2)當(dāng)直線斜率不存在時,;當(dāng)直線斜率存在時,設(shè)直線方程為: ,,聯(lián)立方程后利用弦長公式可得,由圓的性質(zhì)可得,轉(zhuǎn)化條件得,可得,即可得解.

1)設(shè)橢圓的焦距為,

由題意,所以,

故橢圓的方程為

2)當(dāng)直線斜率不存在時,圓過原點,符合題意,;

當(dāng)直線斜率存在時,設(shè)直線方程為:,

由直線與橢圓交于兩點,

,所以,

,

所以,

到直線的距離,則 ,

因為,點在線段上,所以點在線段的延長線上,

只需,

所以,

因為,

所以,所以,

綜上,的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求的極值;

2)當(dāng)時,,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體ABCD的邊長等于2,點A,E位于平面BCD的兩側(cè),且,點PAC的中點.

(1)求證:平面

(2)求BP與平面所成的角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項公式an=﹣n2+8n12,前n項和為Sn,若nm,則SnSm的最大值是(

A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為坐標(biāo)原點,動點在圓上,過軸的垂線,垂足為,點滿足

1)求點的軌跡的方程;

2)直線上的點滿足.過點作直線垂直于線段于點

(ⅰ)證明:恒過定點;

(ⅱ)設(shè)線段于點,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知橢圓過點,是兩個焦點.以橢圓的上頂點為圓心作半徑為的圓,

1)求橢圓的方程;

2)存在過原點的直線,與圓分別交于兩點,與橢圓分別交于兩點(點在線段上),使得,求圓半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)存在兩個極值點,(其中),且的取值范圍為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,底面為正方形,分別為、的中點.

)證明:平面

)求直線與平面所成角的正弦值;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點為線段的中點,點為線段上靠近的三等分點.現(xiàn)沿進(jìn)行翻折,得到四棱錐,如圖2,且.在圖2中:

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案