【題目】如圖,在多面體ABCDE中,∠BAC=90°,AB=AC=2,CD=2AE=2,AE∥CD,且AE⊥底面ABC,F(xiàn)為BC的中點.

(1)求證:AF⊥BD;
(2)求二面角A﹣BE﹣D的余弦值.

【答案】
(1)證明:∵AB=AC,F(xiàn)為BC的中點,

∴AF⊥BC,又AE∥CD,且AE⊥底面ABC,AF底面ABC,

∴AF⊥DC,又BC∩DC=C,且BC、DC面BCD,

∴AF⊥面BCD,又BD面BCD,∴AF⊥BD.


(2)解:以A為原點,AB為x軸,AC為y軸,AE為z軸,建立空間直角坐標(biāo)系如圖,

∴B(2,0,0),D(0,2,2),E(0,0,1),

,

設(shè)面BED的一個法向量為 ,

,令z=2得x=1,y=﹣1,∴

又面ABE的一個法向量為 ,

∵二面角A﹣BE﹣D的平面角是銳角,

∴二面角A﹣BE﹣D的余弦值為


【解析】(1)推導(dǎo)出AF⊥BC,從而AF⊥DC,進而AF⊥面BCD,由此能證明AF⊥BD.(2)以A為原點,AB為x軸,AC為y軸,AE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣BE﹣D的余弦值.
【考點精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1,圓心角為 的圓弧 上有一點C.
(1)若C為圓弧AB的中點,點D在線段OA上運動,求| + |的最小值;
(2)若D,E分別為線段OA,OB的中點,當(dāng)C在圓弧 上運動時,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求值:
(1) +log318﹣log36+
(2)A是△ABC的一個內(nèi)角, ,求cosA﹣sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,P,Q分別是BC和CD的中點.
(1)若AB=2,AD=1,∠BAD=60°,求 及cos∠BAC的余弦值;
(2)若 + ,求λ+μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sinxcosx+sin2x﹣
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設(shè)函數(shù)g(x)=f( + ),其中常數(shù)ω>0,|φ|< . (i)當(dāng)ω=4,φ= 時,函數(shù)y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數(shù)g(x)的一個單調(diào)減區(qū)間內(nèi)有一個零點﹣ ,且其圖象過點A( ,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:a∈(﹣∞,﹣ ],使得函數(shù)f(x)=|2x+ |在[﹣ ,3]上單調(diào)遞增;命題q:a∈[2,+∞),直線2x+y=0與雙曲線 ﹣x2=1(a>0)相交.則下列命題中正確的是(
A.¬p
B.p∧q
C.(¬p)∨q
D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車配件廠生產(chǎn)A、B兩種型號的產(chǎn)品,A型產(chǎn)品的一等品率為 ,二等品率為 ;B型產(chǎn)品的一等品率為 ,二等品率為 .生產(chǎn)1件A型產(chǎn)品,若是一等品則獲得4萬元利潤,若是二等品則虧損1萬元;生產(chǎn)1件B型產(chǎn)品,若是一等品則獲得6萬元利潤,若是二等品則虧損2萬元.設(shè)生產(chǎn)各件產(chǎn)品相互獨立.
(1)求生產(chǎn)4件A型產(chǎn)品所獲得的利潤不少于10萬元的概率;
(2)記X(單位:萬元)為生產(chǎn)1件A型產(chǎn)品和1件B型產(chǎn)品可獲得的利潤,求X的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2x,g(x)=x2+2x,數(shù)列{an}的前n項和記為Sn , bn為數(shù)列{bn}的通項,n∈N* . 點(bn , n)和(n,Sn)分別在函數(shù)f(x)和g(x)的圖象上.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令Cn= ,求數(shù)列{Cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,嘗試類比探究函數(shù)y=x2 的圖象,寫出圖象特征,并根據(jù)你得到的結(jié)論,嘗試猜測作出函數(shù)對應(yīng)的圖象. 閱讀材料:
我國著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休.
在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征.我們來看一個應(yīng)用函數(shù)的特征研究對應(yīng)圖象形狀的例子.
對于函數(shù)y= ,我們可以通過表達式來研究它的圖象和性質(zhì),如:

(1)在函數(shù)y= 中,由x≠0,可以推測出,對應(yīng)的圖象不經(jīng)過y軸,即圖象與y軸不相交;由y≠0,可以推測出,對應(yīng)的圖象不經(jīng)過x軸,即圖象與x軸不相交.
(2)在函數(shù)y= 中,當(dāng)x>0時y>0;當(dāng)x<0時y<0,可以推測出,對應(yīng)的圖象只能在第一、三象限;
(3)在函數(shù)y= 中,若x∈(0,+∞)則y>0,且當(dāng)x逐漸增大時y逐漸減小,可以推測出,對應(yīng)的圖象越向右越靠近x軸;若x∈(﹣∞,0),則y<0,且當(dāng)x逐漸減小時y逐漸增大,可以推測出,對應(yīng)的圖象越向左越靠近x軸;
(4)由函數(shù)y= 可知f(﹣x)=﹣f(x),即y= 是奇函數(shù),可以推測出,對應(yīng)的圖象關(guān)于原點對稱. 結(jié)合以上性質(zhì),逐步才想出函數(shù)y= 對應(yīng)的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類討論的思想,既進行了靜態(tài)(特殊點)的研究,又進行了動態(tài)(趨勢性)的思考.讓我們享受數(shù)學(xué)研究的過程,傳播研究數(shù)學(xué)的成果.

查看答案和解析>>

同步練習(xí)冊答案