(本題滿分13分)已知圓C: 
(1)若平面上有兩點(diǎn)A(1 , 0),B(-1 , 0),點(diǎn)P是圓C上的動(dòng)點(diǎn),求使 取得最小值時(shí)點(diǎn)P的坐標(biāo).   
(2) 若軸上的動(dòng)點(diǎn),分別切圓兩點(diǎn)
①若,求直線的方程;
②求證:直線恒過(guò)一定點(diǎn).
解:(1)設(shè)P(x , y), 則由兩點(diǎn)之間的距離公式知
==2
要使取得最小值只要使最小即可
又P為圓上的點(diǎn),所以  (半徑) 
  此時(shí)直線 
解得   或 (舍去)∴點(diǎn)P的坐標(biāo)為                                               
…………4分
(2)①設(shè)   因?yàn)閳A的半徑,  而 則,
     而為等邊三角形。
 即
所求直線的方程: …………………8分
②  則是以為直徑的圓上。設(shè)
為直徑的圓的方程:
 與圓聯(lián)立,消去 得 ,故無(wú)論取何值時(shí),直線恒過(guò)一定點(diǎn).13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.為雙曲線上的一點(diǎn),為一個(gè)焦點(diǎn),以為直徑的圓與圓的位置關(guān)系是
內(nèi)切      內(nèi)切或外切       .外切       .相離或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn),且橢圓的離心率為
(1)求橢圓的方程
(2)是否存在以為直角頂點(diǎn)且內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個(gè);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于)兩點(diǎn),且
(1)求該拋物線的方程;
(2)為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)斜率為的直線與橢圓交于不同的兩點(diǎn),且這兩個(gè)交點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn)的橢圓的右焦點(diǎn)為,離心率為
(1)  求橢圓的方程
(2)  若直線與橢圓恒有兩個(gè)不同交點(diǎn)、,且(其中為原點(diǎn)),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)在直角坐標(biāo)系xOy中,橢圓C1的左、右焦點(diǎn)分別為F1、F2.F2也是拋物線C2的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且
(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足,直線l∥MN,且與C1交于A、B兩點(diǎn),若·=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的長(zhǎng)軸長(zhǎng)為,離心率

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若過(guò)點(diǎn)B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點(diǎn)E,F(xiàn)(E在B,F(xiàn)之間),且OBE與OBF的面積之比為, 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線的漸近線為,則雙曲線的離心率為_(kāi)__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案