我們知道,任何一個三角形的任意三條邊與對應(yīng)的三個內(nèi)角滿足余弦定理,比如:在△ABC中,三條邊a,b,c對應(yīng)的內(nèi)角分別為A、B、C,那么用余弦定理表達邊角關(guān)系的一種形式為:a2=b2+c2-2bccosA,請你用規(guī)范合理的文字敘述余弦定理(注意,表述中不能出現(xiàn)任何字母):   
【答案】分析:根據(jù)邊角關(guān)系的符號表示,即可得到文字敘述.
解答:解:文字敘述余弦定理為:三角形的任意一邊的平方等于另外兩邊的平方和與這兩邊以及它們的夾角的余弦的乘積的2倍的差.
故答案為:三角形的任意一邊的平方等于另外兩邊的平方和與這兩邊以及它們的夾角的余弦的乘積的2倍的差.
點評:本題考查余弦定理的表述方法,考查學(xué)生理解能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

我們知道,任何一個三角形的任意三條邊與對應(yīng)的三個內(nèi)角滿足余弦定理,比如:在△ABC中,三條邊a,b,c對應(yīng)的內(nèi)角分別為A、B、C,那么用余弦定理表達邊角關(guān)系的一種形式為:a2=b2+c2-2bccosA,請你用規(guī)范合理的文字敘述余弦定理(注意,表述中不能出現(xiàn)任何字母):
三角形的任意一邊的平方等于另外兩邊的平方和與這兩邊以及它們的夾角的余弦的乘積的2倍的差
三角形的任意一邊的平方等于另外兩邊的平方和與這兩邊以及它們的夾角的余弦的乘積的2倍的差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

我們知道,任何一個三角形的任意三條邊與對應(yīng)的三個內(nèi)角滿足余弦定理,比如:在△ABC中,三條邊a,b,c對應(yīng)的內(nèi)角分別為A、B、C,那么用余弦定理表達邊角關(guān)系的一種形式為:a2=b2+c2-2bccosA,請你用規(guī)范合理的文字敘述余弦定理(注意,表述中不能出現(xiàn)任何字母):______.

查看答案和解析>>

同步練習冊答案