已知點A(-,0),點B(,0),且動點P滿足|PA|-|PB|=2,則動點P的軌跡與直線y=k(x-2)有兩個交點的充要條件為k∈________.

 

【答案】

(-∞,-1)∪(1,+∞)

【解析】由已知得動點P的軌跡為一雙曲線的右支且2a=2,c=,則b==1,所以P點的軌跡方程為x2-y2=1(x>0),其一條漸近線方程為y=x.若P點的軌跡與直線y=k(x-2)有兩個交點,

則需k∈(-∞,-1)∪(1,+∞).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點A ( 
1
2
 , 0 )
,點B在直線l:x=-
1
2
上運動,過點B與l垂直的直線和AB的中垂線相交于點M.
(Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)設(shè)點P是軌跡E上的動點,點R,N在y軸上,圓C:(x-1)2+y2=1內(nèi)切于△PRN,求△PRN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-
2
,0),B(
2
,0)
,P是平面內(nèi)的一個動點,直線PA與PB交于點P,且它們的斜率之積是-
1
2

(Ⅰ)求動點P的軌跡C的方程,并求出曲線C的離心率的值;
(Ⅱ)設(shè)直線l:y=kx+1與曲線C交于M、N兩點,當(dāng)線段MN的中點在直線x+2y=0上時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•邯鄲一模)在平面直角坐標(biāo)系中,點P(x,y)為動點,已知點A(
2
,0)
B(-
2
,0)
,直線PA與PB的斜率之積為-
1
2

(I)求動點P軌跡E的方程;
( II)過點F(1,0)的直線l交曲線E于M,N兩點,設(shè)點N關(guān)于x軸的對稱點為Q(M、Q不重合),求證:直線MQ過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知點A ( 
1
2
 , 0 )
,點B在直線l:x=-
1
2
上運動,過點B與l垂直的直線和AB的中垂線相交于點M.
(Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)設(shè)點P是軌跡E上的動點,點R,N在y軸上,圓C:
x=1+cosθ
y=sinθ     
(θ為參數(shù))內(nèi)切于△PRN,求△PRN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(
2
,0)
,動點M,N滿足
OA
+
OM
=2
ON
,其中O是坐標(biāo)原點,若KAM•K ON=-
1
2

(1)求點M的軌跡E的方程;
(2)若過點H(0,h)(h>1)的兩條直線l1和l2與軌跡E都只有一個共公點,且l1⊥l2,求h的值.

查看答案和解析>>

同步練習(xí)冊答案