若a>0,b>0且ln(a+b)=0,則數(shù)學(xué)公式的最小值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    1
  3. C.
    4
  4. D.
    8
C
分析:依題意,可求得a+b=1,利用基本不等式即可求得答案.
解答:∵a>0,b>0且ln(a+b)=0,
∴a+b=1,
+=(a+b)(+)=1+1++≥4(當(dāng)且僅當(dāng)a=b=時取“=”).
∴則的最小值是4.
故選C.
點評:本題考查基本不等式,求得a+b=1是關(guān)鍵,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點是F2(2,0),且b=
3
a

(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過焦點F2的直線l的一個法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點時,求實數(shù)m的取值范圍;并證明AB中點M在曲線3(x-1)2-y2=3上.
(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點,問是否存在實數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩條漸近線互相垂直,且C的焦點到其漸近線的距離為
2
,過點E(1,0)且傾斜角為銳角的直線l交C于A、B兩點.
(I)求雙曲線C的方程;
(II)若
EA
=t
EB
,且1<t<3
,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1、F2,點P在雙曲線的右支上,直線l為過P且切于雙曲線的直線,且平分∠F1PF2,過O作與直線l平行的直線交PF1于M點,則MP=a,利用類比推理:若橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,點P在橢圓上,直線l為過P且切于橢圓的直線,且平分∠F1PF2的外角,過O作與直線平行的直線交PF1于M點,則|MP|的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津模擬)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1、F2,上頂點為A,在x軸負(fù)半軸上有一點B,滿足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A、B、F2三點的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;                      
(Ⅲ)在(Ⅱ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,若點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0且
1
a
+
2
b
=1
,求:
(1)a+b的最小值;
(2)若直線l與x軸、y軸分別交于A(a,0)、B(0,b),求VABO(O為坐標(biāo)原點)面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案