【題目】設(shè)全集,關(guān)于的不等式)的解集為.

1)求集合

2)設(shè)集合,若 中有且只有三個(gè)元素,求實(shí)數(shù)的取值范圍.

【答案】(1)當(dāng)時(shí),;當(dāng)時(shí),;

2.

【解析】

1)將不等式化簡(jiǎn),結(jié)合絕對(duì)值的意義解不等式即可.

2)討論兩種情況下的情況.將集合B化簡(jiǎn),結(jié)合正弦函數(shù)定義可求得集合B.再由 中有且只有三個(gè)元素可得關(guān)于的不等式組,解不等式即可求得的取值范圍.

1)由

化簡(jiǎn)可得

當(dāng)時(shí),解集是;

當(dāng)時(shí),

解得

所以解集是

綜上所述, 當(dāng)時(shí),解集是;當(dāng)時(shí), 解集是

2(i)當(dāng)時(shí), ,不合題意;

(ii)當(dāng)時(shí), 。

結(jié)合正弦的差角公式與余弦的差角公式展開(kāi)化簡(jiǎn)可得

,

由正弦函數(shù)的性質(zhì),

,,所以

當(dāng)3個(gè)元素時(shí),

滿足

解不等式組可得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,.

(1),求實(shí)數(shù)的值;

(2),求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是一個(gè)集合,是一個(gè)以的某些子集為元素的集合,且滿足:(1屬于,屬于;(2中任意多個(gè)元素的并集屬于;(3中任意多個(gè)元素的交集屬于,則稱(chēng)是集合上的一個(gè)拓補(bǔ).已知集合,對(duì)于下面給出的四個(gè)集合

其中是集合上的拓補(bǔ)的集合的序號(hào)是______.(寫(xiě)出所有的拓補(bǔ)的集合的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).其中是自然對(duì)數(shù)的底數(shù).

1)求函數(shù)在點(diǎn)處的切線方程;

2)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于自然數(shù)數(shù)組,如下定義該數(shù)組的極差:三個(gè)數(shù)的最大值與最小值的差.如果的極差,可實(shí)施如下操作:若中最大的數(shù)唯一,則把最大數(shù)減2,其余兩個(gè)數(shù)各增加1;若中最大的數(shù)有兩個(gè),則把最大數(shù)各減1,第三個(gè)數(shù)加2,此為一次操作,操作結(jié)果記為,其級(jí)差為.,則繼續(xù)對(duì)實(shí)施操作,,實(shí)施次操作后的結(jié)果記為,其極差記為.例如:,.

1)若,求的值;

2)已知的極差為,若時(shí),恒有,求的所有可能取值;

3)若是以4為公比的正整數(shù)等比數(shù)列中的任意三項(xiàng),求證:存在滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是由正方形,直角梯形,三角形組成的一個(gè)平面圖形,其中,,將其沿,折起使得重合,連接,如圖2.

(1)證明:圖2中的,,,四點(diǎn)共面,且平面平面

(2)求圖2中的二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市在開(kāi)展創(chuàng)建全國(guó)文明城市活動(dòng)中,工作有序扎實(shí),成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評(píng).“創(chuàng)文過(guò)程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護(hù)問(wèn)題情況的問(wèn)卷調(diào)查,現(xiàn)從參與問(wèn)卷調(diào)查的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求出a的值;

2)若已從年齡較小的第12組中用分層抽樣的方法抽取5人,現(xiàn)要再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,設(shè)第2組抽到人,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓的左頂點(diǎn)為,且橢圓經(jīng)過(guò)點(diǎn),與坐標(biāo)軸不垂直的直線與橢圓交于兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線和直線的斜率之積為,求證:直線過(guò)定點(diǎn);

3)若為橢圓上一點(diǎn),且,求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=()|x|,若函數(shù)g(x)=f(x1)+a(ex1+ex+1)存在最大值M,則實(shí)數(shù)a的取值范圍為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案