(1)已知:a,b∈R+,且a+b=1,
求證:2a+2b<3.
(2)已知:a,b是互不相等的正數(shù),設函數(shù)f(n)=an-bn,且f(3)=f(2).
求證:1<a+b<.
解答 (1)由a+b=1得 2a+2b<32a+21-a<3 <0 1<2a<2.∵a,b∈R+,且a+b=1, ∴0<a<1,故2a+2b<3. (2)∵a,b是互不相等的正數(shù), 由f(n)=an-bn,f(2)=f(3), 得a2-b2=a3-b3,即a2+ab+b2=a+b. 由(a+b)2=a2+2ab+b2>a2+ab+b2=a+b, (a+b)2>a+b a+b>1. 0<a+b< 3(a+b)<4, 3(a+b)2<4(a+b) 3(a2+2ab+b2)<4(a2+ab+b2) a2-2ab+b2>0 (a-b)2>0. ∵a,b為互不相等的正數(shù), ∴(a-b)2>0總成立,故a+b<. 綜上有1<a+b<. 評析 分析法(執(zhí)果索因,逆流而上)證題思路是BC…A. (2)題中運用了分析法與綜合法,從已知條件出發(fā),實行降冪變換,證出了a+b>1,而從結論出發(fā),實行升冪變換導出了a+b<這是兩種不同的思維程序. |
科目:高中數(shù)學 來源:2008-2009學年高三數(shù)學模擬試題分類匯編:不等式 題型:044
(1)已知:a,b,x均是正數(shù),且a>b,求證:;
(2)當a,b,x均是正數(shù),且a<b,對真分數(shù),給出類似上小題的結論,并予以證明;
(3)證明:△ABC中,(可直接應用第(1)、(2)小題結論)
(4)自己設計一道可直接應用第(1)、(2)小題結論的不等式證明題,并寫出證明過程.
查看答案和解析>>
科目:高中數(shù)學 來源:上海市2008-2009學年高三數(shù)學模擬試題分類匯編:不等式 題型:047
(1)已知:a、b、x均是正數(shù),且a>b,求證:1<
(2)當a,b,x均是正數(shù),且a<b,對真分數(shù),給出類似上小題的結論,并予以證明;
(3)證明:△ABC中,(可直接應用第(1)、(2)小題結論)
(4)自己設計一道可直接應用第(1)、(2)小題結論的不等式證明題,并寫出證明過程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2)設a、b∈R,求證:a2+b2≥2(a-b-1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com